mpnormlim.pro 8.64 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
;+
; NAME:
;   MPNORMLIM
;
; AUTHOR:
;   Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
;   craigm@lheamail.gsfc.nasa.gov
;   UPDATED VERSIONs can be found on my WEB PAGE: 
;      http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
;   Compute confidence limits for normally distributed variable
;
; MAJOR TOPICS:
;   Curve and Surface Fitting, Statistics
;
; CALLING SEQUENCE:
;   Z = MPNORMLIM(PROB, [/CLEVEL, /SLEVEL ])
;
; DESCRIPTION:
;
;  The function MPNORMLIM() computes confidence limits of a normally
;  distributed variable (with zero mean and unit variance), for a
;  desired probability level.  The returned values, Z, are the
;  limiting values: a the magnitude of a normally distributed value
;  is greater than Z by chance with a probability PROB:
;
;    P_NORM(ABS(X) > Z) = PROB
;
;  In specifying the probability level the user has two choices:
;
;    * give the confidence level (default);
;
;    * give the significance level (i.e., 1 - confidence level) and
;      pass the /SLEVEL keyword; OR
;
;  Note that /SLEVEL and /CLEVEL are mutually exclusive.
;
; INPUTS:
;
;   PROB - scalar or vector number, giving the desired probability
;          level as described above.
;
; RETURNS:
;
;  Returns a scalar or vector of normal confidence limits.
;
; KEYWORD PARAMETERS:
;
;   SLEVEL - if set, then PROB describes the significance level.
;
;   CLEVEL - if set, then PROB describes the confidence level
;            (default).
;
; EXAMPLE:
;
;   print, mpnormlim(0.99d, /clevel)
;
;   Print the 99% confidence limit for a normally distributed
;   variable.  In this case it is about 2.58 sigma.
;
; REFERENCES:
;
;   Algorithms taken from CEPHES special function library, by Stephen
;   Moshier. (http://www.netlib.org/cephes/)
;
; MODIFICATION HISTORY:
;   Completed, 1999, CM
;   Documented, 16 Nov 2001, CM
;   Reduced obtrusiveness of common block and math error handling, 18
;     Nov 2001, CM
;   Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
;   Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
;   Add usage message, 24 Nov 2006, CM
;
;  $Id: mpnormlim.pro,v 1.6 2006/11/25 01:44:13 craigm Exp $
;-
; Copyright (C) 1997-2001, 2006, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-

forward_function cephes_polevl, cephes_ndtri, mpnormlim

;; Set machine constants, once for this session.  Double precision
;; only.
pro cephes_setmachar
  COMPILE_OPT strictarr
  common cephes_machar, cephes_machar_vals
  if n_elements(cephes_machar_vals) GT 0 then return

  if (!version.release) LT 5 then dummy = check_math(1, 1)

  mch = machar(/double)
  machep = mch.eps
  maxnum = mch.xmax
  minnum = mch.xmin
  maxlog = alog(mch.xmax)
  minlog = alog(mch.xmin)
  maxgam = 171.624376956302725D

  cephes_machar_vals = {machep: machep, maxnum: maxnum, minnum: minnum, $
                        maxlog: maxlog, minlog: minlog, maxgam: maxgam}

  if (!version.release) LT 5 then dummy = check_math(0, 0)
  return
end

function cephes_polevl, x, coef
  COMPILE_OPT strictarr
  ans = coef[0]
  nc  = n_elements(coef)
  for i = 1L, nc-1 do ans = ans * x + coef[i]
  return, ans
end

function cephes_ndtri, y0
;   
;   	Inverse of Normal distribution function
;   
;   
;   
;    SYNOPSIS:
;   
;    double x, y, ndtri();
;   
;    x = ndtri( y );
;   
;   
;   
;    DESCRIPTION:
;   
;    Returns the argument, x, for which the area under the
;    Gaussian probability density function (integrated from
;    minus infinity to x) is equal to y.
;   
;   
;    For small arguments 0 < y < exp(-2), the program computes
;    z = sqrt( -2.0 * log(y) );  then the approximation is
;    x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
;    There are two rational functions P/Q, one for 0 < y < exp(-32)
;    and the other for y up to exp(-2).  For larger arguments,
;    w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
;   
;   
;    ACCURACY:
;   
;                         Relative error:
;    arithmetic   domain        # trials      peak         rms
;       DEC      0.125, 1         5500       9.5e-17     2.1e-17
;       DEC      6e-39, 0.135     3500       5.7e-17     1.3e-17
;       IEEE     0.125, 1        20000       7.2e-16     1.3e-16
;       IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17
;   
;   
;    ERROR MESSAGES:
;   
;      message         condition    value returned
;    ndtri domain       x <= 0        -MAXNUM
;    ndtri domain       x >= 1         MAXNUM
  COMPILE_OPT strictarr
  common cephes_ndtri_data, s2pi, p0, q0, p1, q1, p2, q2

  if n_elements(s2pi) EQ 0 then begin
      s2pi = sqrt(2.D*!dpi)
      p0 = [ -5.99633501014107895267D1,  9.80010754185999661536D1, $
             -5.66762857469070293439D1,  1.39312609387279679503D1, $
             -1.23916583867381258016D0 ]
      q0 = [ 1.D, $
             1.95448858338141759834D0,   4.67627912898881538453D0, $
             8.63602421390890590575D1,  -2.25462687854119370527D2, $
             2.00260212380060660359D2,  -8.20372256168333339912D1, $
             1.59056225126211695515D1,  -1.18331621121330003142D0  ]
      p1 = [ 4.05544892305962419923D0,   3.15251094599893866154D1, $
             5.71628192246421288162D1,   4.40805073893200834700D1, $
             1.46849561928858024014D1,   2.18663306850790267539D0, $
             -1.40256079171354495875D-1,-3.50424626827848203418D-2,$
             -8.57456785154685413611D-4  ]
      q1 = [ 1.D, $
             1.57799883256466749731D1,   4.53907635128879210584D1, $
             4.13172038254672030440D1,   1.50425385692907503408D1, $
             2.50464946208309415979D0,  -1.42182922854787788574D-1,$
             -3.80806407691578277194D-2,-9.33259480895457427372D-4 ]
      p2 = [  3.23774891776946035970D0,  6.91522889068984211695D0, $
              3.93881025292474443415D0,  1.33303460815807542389D0, $
              2.01485389549179081538D-1, 1.23716634817820021358D-2,$
              3.01581553508235416007D-4, 2.65806974686737550832D-6,$
              6.23974539184983293730D-9 ]
      q2 = [  1.D, $
              6.02427039364742014255D0,  3.67983563856160859403D0, $
              1.37702099489081330271D0,  2.16236993594496635890D-1,$
              1.34204006088543189037D-2, 3.28014464682127739104D-4,$
              2.89247864745380683936D-6, 6.79019408009981274425D-9]
  endif

  common cephes_machar, machvals
  MAXNUM = machvals.maxnum

  if y0 LE 0 then begin
      message, 'ERROR: domain', /info
      return, -MAXNUM
  endif
  if y0 GE 1 then begin
      message, 'ERROR: domain', /info
      return, MAXNUM
  endif

  code = 1
  y = y0
  exp2 = exp(-2.D)
  if y GT (1.D - exp2) then begin
      y = 1.D - y
      code = 0
  endif
  if y GT exp2 then begin
      y = y - 0.5
      y2 = y * y
      x = y + y * y2 * cephes_polevl(y2, p0) / cephes_polevl(y2, q0)
      x = x * s2pi
      return, x
  endif
  
  x = sqrt( -2.D * alog(y))
  x0 = x - alog(x)/x
  z = 1.D/x
  if x LT 8. then $
    x1 = z * cephes_polevl(z, p1) / cephes_polevl(z, q1) $
  else $
    x1 = z * cephes_polevl(z, p2) / cephes_polevl(z, q2)

  x = x0 - x1
  if code NE 0 then x = -x
  return, x
end

; MPNORMLIM - given a probability level, return the corresponding
;             "sigma" level.
;
;  p - Either the significance level (if SLEVEL is set) or the
;      confidence level (if CLEVEL is set).  This should be the
;      two-tailed level, ie:
;
;         * SLEVEL:   p = Prob(|z| > z0)
;         * CLEVEL:   p = Prob(|z| < z0)
;

function mpnormlim, p, clevel=clevel, slevel=slevel

  COMPILE_OPT strictarr

  if n_params() EQ 0 then begin
      message, 'USAGE: Z = MPNORMLIM(PROB, [/CLEVEL, /SLEVEL ])', /info
      return, !values.d_nan
  endif

  cephes_setmachar   ;; Set machine constants

  ;; Default is to assume the confidence level
  if n_elements(clevel) EQ 0 then clevel = 1
  y = 0 * p

  ;; cephes_ndtri accepts the integrated probability from negative
  ;; infinity to z, so we have to compute.
  if keyword_set(slevel) then begin
      p1 = 0.5D * p    ;; Take only one of the two tails
      for i = 0L, n_elements(y)-1 do begin
          y[i] = - cephes_ndtri(p1[i])
      endfor
  endif else if keyword_set(clevel) then begin
      p1 = 0.5D + 0.5D * p  ;; On binary computers this computation is 
      ;; exact (to the machine precision), so don't worry about it.
      ;; This computation shaves off the top half of the confidence
      ;; region, and then adds the "negative infinity to zero part.
      for i = 0L, n_elements(y)-1 do begin
          y[i] = cephes_ndtri(p1[i])
      endfor
  endif else begin
      message, 'ERROR: must specify one of CLEVEL or SLEVEL'
  endelse


  return, y
end