<p>netcdf4-python is a Python interface to the netCDF C library. </p>
...
...
@@ -1772,6 +1776,17 @@ Hemisphere longitudes, resulting in a numpy array of shape (3, 3, 36, 71).</p>
<p><strong><em>Special note for scalar variables</em></strong>: To extract data from a scalar variable
<code>v</code> with no associated dimensions, use <code>numpy.asarray(v)</code> or <code>v[...]</code>. The result
will be a numpy scalar array.</p>
<p>By default, netcdf4-python returns numpy masked arrays with values equal to the
<code>missing_value</code> or <code>_FillValue</code> variable attributes masked. The
<ahref="#netCDF4.Dataset.set_auto_mask"><code>set_auto_mask</code></a><ahref="#netCDF4.Dataset"><code>Dataset</code></a> and <ahref="#netCDF4.Variable"><code>Variable</code></a> methods
can be used to disable this feature so that
numpy arrays are always returned, with the missing values included. Prior to
version 1.4.0 the default behavior was to only return masked arrays when the
requested slice contained missing values. This behavior can be recovered
using the <ahref="#netCDF4.Dataset.set_always_mask"><code>set_always_mask</code></a> method. If a masked array is
written to a netCDF variable, the masked elements are filled with the
value specified by the <code>missing_value</code> attribute. If the variable has
no <code>missing_value</code>, the <code>_FillValue</code> is used instead.</p>
<h2><divid='section7'>7) Dealing with time coordinates.</h2>
<p>Time coordinate values pose a special challenge to netCDF users. Most
metadata standards (such as CF) specify that time should be
...
...
@@ -3290,6 +3305,29 @@ character encoding of a string attribute (default is <code>utf-8</code>).</p></d
long_description="netCDF version 4 has many features not found in earlier versions of the library, such as hierarchical groups, zlib compression, multiple unlimited dimensions, and new data types. It is implemented on top of HDF5. This module implements most of the new features, and can read and write netCDF files compatible with older versions of the library. The API is modelled after Scientific.IO.NetCDF, and should be familiar to users of that module.\n\nThis project is hosted on a `GitHub repository <https://github.com/Unidata/netcdf4-python>`_ where you may access the most up-to-date source.",