atanl.c 7.79 KB
Newer Older
1 2
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>

3
   This program is free software: you can redistribute it and/or modify
4
   it under the terms of the GNU General Public License as published by
5 6
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
7 8 9 10 11 12 13

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
14
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
15 16 17 18 19 20

#include <config.h>

/* Specification.  */
#include <math.h>

21 22 23 24 25 26 27 28 29 30
#if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE

long double
atanl (long double x)
{
  return atan (x);
}

#else

Bruno Haible's avatar
Bruno Haible committed
31 32
/* Code based on glibc/sysdeps/ieee754/ldbl-128/s_atanl.c.  */

33
/*                                                      s_atanl.c
34
 *
35
 *      Inverse circular tangent for 128-bit long double precision
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 *      (arctangent)
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, atanl();
 *
 * y = atanl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns radian angle between -pi/2 and +pi/2 whose tangent is x.
 *
 * The function uses a rational approximation of the form
 * t + t^3 P(t^2)/Q(t^2), optimized for |t| < 0.09375.
 *
 * The argument is reduced using the identity
 *    arctan x - arctan u  =  arctan ((x-u)/(1 + ux))
 * and an 83-entry lookup table for arctan u, with u = 0, 1/8, ..., 10.25.
 * Use of the table improves the execution speed of the routine.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      -19, 19       4e5       1.7e-34     5.4e-35
 *
 *
 * WARNING:
 *
 * This program uses integer operations on bit fields of floating-point
 * numbers.  It does not work with data structures other than the
 * structure assumed.
 *
 */

/* arctan(k/8), k = 0, ..., 82 */
static const long double atantbl[84] = {
  0.0000000000000000000000000000000000000000E0L,
  1.2435499454676143503135484916387102557317E-1L, /* arctan(0.125)  */
  2.4497866312686415417208248121127581091414E-1L,
  3.5877067027057222039592006392646049977698E-1L,
  4.6364760900080611621425623146121440202854E-1L,
  5.5859931534356243597150821640166127034645E-1L,
  6.4350110879328438680280922871732263804151E-1L,
  7.1882999962162450541701415152590465395142E-1L,
  7.8539816339744830961566084581987572104929E-1L,
  8.4415398611317100251784414827164750652594E-1L,
  8.9605538457134395617480071802993782702458E-1L,
  9.4200004037946366473793717053459358607166E-1L,
  9.8279372324732906798571061101466601449688E-1L,
  1.0191413442663497346383429170230636487744E0L,
  1.0516502125483736674598673120862998296302E0L,
  1.0808390005411683108871567292171998202703E0L,
  1.1071487177940905030170654601785370400700E0L,
  1.1309537439791604464709335155363278047493E0L,
  1.1525719972156675180401498626127513797495E0L,
  1.1722738811284763866005949441337046149712E0L,
  1.1902899496825317329277337748293183376012E0L,
  1.2068173702852525303955115800565576303133E0L,
  1.2220253232109896370417417439225704908830E0L,
  1.2360594894780819419094519711090786987027E0L,
  1.2490457723982544258299170772810901230778E0L,
  1.2610933822524404193139408812473357720101E0L,
  1.2722973952087173412961937498224804940684E0L,
  1.2827408797442707473628852511364955306249E0L,
  1.2924966677897852679030914214070816845853E0L,
  1.3016288340091961438047858503666855921414E0L,
  1.3101939350475556342564376891719053122733E0L,
  1.3182420510168370498593302023271362531155E0L,
  1.3258176636680324650592392104284756311844E0L,
  1.3329603993374458675538498697331558093700E0L,
  1.3397056595989995393283037525895557411039E0L,
  1.3460851583802539310489409282517796256512E0L,
  1.3521273809209546571891479413898128509842E0L,
  1.3578579772154994751124898859640585287459E0L,
  1.3633001003596939542892985278250991189943E0L,
  1.3684746984165928776366381936948529556191E0L,
  1.3734007669450158608612719264449611486510E0L,
  1.3780955681325110444536609641291551522494E0L,
  1.3825748214901258580599674177685685125566E0L,
  1.3868528702577214543289381097042486034883E0L,
  1.3909428270024183486427686943836432060856E0L,
  1.3948567013423687823948122092044222644895E0L,
  1.3986055122719575950126700816114282335732E0L,
  1.4021993871854670105330304794336492676944E0L,
  1.4056476493802697809521934019958079881002E0L,
  1.4089588955564736949699075250792569287156E0L,
  1.4121410646084952153676136718584891599630E0L,
  1.4152014988178669079462550975833894394929E0L,
  1.4181469983996314594038603039700989523716E0L,
  1.4209838702219992566633046424614466661176E0L,
  1.4237179714064941189018190466107297503086E0L,
  1.4263547484202526397918060597281265695725E0L,
  1.4288992721907326964184700745371983590908E0L,
  1.4313562697035588982240194668401779312122E0L,
  1.4337301524847089866404719096698873648610E0L,
  1.4360250423171655234964275337155008780675E0L,
  1.4382447944982225979614042479354815855386E0L,
  1.4403930189057632173997301031392126865694E0L,
  1.4424730991091018200252920599377292525125E0L,
  1.4444882097316563655148453598508037025938E0L,
  1.4464413322481351841999668424758804165254E0L,
  1.4483352693775551917970437843145232637695E0L,
  1.4501726582147939000905940595923466567576E0L,
  1.4519559822271314199339700039142990228105E0L,
  1.4536875822280323362423034480994649820285E0L,
  1.4553696664279718992423082296859928222270E0L,
  1.4570043196511885530074841089245667532358E0L,
  1.4585935117976422128825857356750737658039E0L,
  1.4601391056210009726721818194296893361233E0L,
  1.4616428638860188872060496086383008594310E0L,
  1.4631064559620759326975975316301202111560E0L,
  1.4645314639038178118428450961503371619177E0L,
  1.4659193880646627234129855241049975398470E0L,
  1.4672716522843522691530527207287398276197E0L,
  1.4685896086876430842559640450619880951144E0L,
  1.4698745421276027686510391411132998919794E0L,
  1.4711276743037345918528755717617308518553E0L,
  1.4723501675822635384916444186631899205983E0L,
  1.4735431285433308455179928682541563973416E0L, /* arctan(10.25) */
  1.5707963267948966192313216916397514420986E0L  /* pi/2 */
};


/* arctan t = t + t^3 p(t^2) / q(t^2)
   |t| <= 0.09375
   peak relative error 5.3e-37 */

static const long double
  p0 = -4.283708356338736809269381409828726405572E1L,
  p1 = -8.636132499244548540964557273544599863825E1L,
  p2 = -5.713554848244551350855604111031839613216E1L,
  p3 = -1.371405711877433266573835355036413750118E1L,
  p4 = -8.638214309119210906997318946650189640184E-1L,
  q0 = 1.285112506901621042780814422948906537959E2L,
  q1 = 3.361907253914337187957855834229672347089E2L,
  q2 = 3.180448303864130128268191635189365331680E2L,
  q3 = 1.307244136980865800160844625025280344686E2L,
  q4 = 2.173623741810414221251136181221172551416E1L;
  /* q5 = 1.000000000000000000000000000000000000000E0 */


long double
atanl (long double x)
{
  int k, sign;
  long double t, u, p, q;

  /* Check for zero or NaN.  */
191
  if (isnanl (x) || x == 0.0)
192 193
    return x + x;

194 195
  sign = x < 0.0;

196
  if (x + x == x)
197 198 199
    {
      /* Infinity. */
      if (sign)
200
        return -atantbl[83];
201
      else
202
        return atantbl[83];
203
    }
204

205 206
  if (sign)
      x = -x;
207

208
  if (x >= 10.25)
209 210 211 212 213 214 215
    {
      k = 83;
      t = -1.0/x;
    }
  else
    {
      /* Index of nearest table element.
216
         Roundoff to integer is asymmetrical to avoid cancellation when t < 0
217 218 219 220 221 222 223 224 225 226 227 228 229 230
         (cf. fdlibm). */
      k = 8.0 * x + 0.25;
      u = 0.125 * k;
      /* Small arctan argument.  */
      t = (x - u) / (1.0 + x * u);
    }

  /* Arctan of small argument t.  */
  u = t * t;
  p =     ((((p4 * u) + p3) * u + p2) * u + p1) * u + p0;
  q = ((((u + q4) * u + q3) * u + q2) * u + q1) * u + q0;
  u = t * u * p / q  +  t;

  /* arctan x = arctan u  +  arctan t */
231 232 233 234 235
  u = atantbl[k] + u;
  if (sign)
    return (-u);
  else
    return u;
236
}
237 238

#endif