gl_anyrbtree_list2.h 32.2 KB
Newer Older
1
/* Sequential list data type implemented by a binary tree.
Paul Eggert's avatar
Paul Eggert committed
2
   Copyright (C) 2006-2007, 2009-2016 Free Software Foundation, Inc.
3 4
   Written by Bruno Haible <bruno@clisp.org>, 2006.

5
   This program is free software: you can redistribute it and/or modify
6
   it under the terms of the GNU General Public License as published by
7 8
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
9 10 11 12 13 14 15

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
16
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 18 19 20 21 22 23 24

/* Common code of gl_rbtree_list.c and gl_rbtreehash_list.c.  */

/* -------------------------- gl_list_t Data Type -------------------------- */

/* Create a subtree for count >= 1 elements.
   Its black-height bh is passed as argument, with
   2^bh - 1 <= count <= 2^(bh+1) - 1.  bh == 0 implies count == 1.
25 26
   Its height is h where 2^(h-1) <= count <= 2^h - 1.
   Return NULL upon out-of-memory.  */
27 28
static gl_list_node_t
create_subtree_with_contents (unsigned int bh,
29
                              size_t count, const void **contents)
30 31 32 33
{
  size_t half1 = (count - 1) / 2;
  size_t half2 = count / 2;
  /* Note: half1 + half2 = count - 1.  */
34 35 36 37
  gl_list_node_t node =
    (struct gl_list_node_impl *) malloc (sizeof (struct gl_list_node_impl));
  if (node == NULL)
    return NULL;
38 39 40 41

  if (half1 > 0)
    {
      /* half1 > 0 implies count > 1, implies bh >= 1, implies
42
           2^(bh-1) - 1 <= half1 <= 2^bh - 1.  */
43
      node->left =
44
        create_subtree_with_contents (bh - 1, half1, contents);
45 46
      if (node->left == NULL)
        goto fail1;
47 48 49 50 51 52 53 54 55 56
      node->left->parent = node;
    }
  else
    node->left = NULL;

  node->value = contents[half1];

  if (half2 > 0)
    {
      /* half2 > 0 implies count > 1, implies bh >= 1, implies
57
           2^(bh-1) - 1 <= half2 <= 2^bh - 1.  */
58 59
      node->right =
       create_subtree_with_contents (bh - 1, half2, contents + half1 + 1);
60 61
      if (node->right == NULL)
        goto fail2;
62 63 64 65 66 67 68 69 70 71
      node->right->parent = node;
    }
  else
    node->right = NULL;

  node->color = (bh == 0 ? RED : BLACK);

  node->branch_size = count;

  return node;
72 73 74 75 76 77 78

 fail2:
  if (node->left != NULL)
    free_subtree (node->left);
 fail1:
  free (node);
  return NULL;
79 80 81
}

static gl_list_t
82 83 84 85 86 87
gl_tree_nx_create (gl_list_implementation_t implementation,
                   gl_listelement_equals_fn equals_fn,
                   gl_listelement_hashcode_fn hashcode_fn,
                   gl_listelement_dispose_fn dispose_fn,
                   bool allow_duplicates,
                   size_t count, const void **contents)
88
{
89 90 91 92 93
  struct gl_list_impl *list =
    (struct gl_list_impl *) malloc (sizeof (struct gl_list_impl));

  if (list == NULL)
    return NULL;
94 95 96 97

  list->base.vtable = implementation;
  list->base.equals_fn = equals_fn;
  list->base.hashcode_fn = hashcode_fn;
98
  list->base.dispose_fn = dispose_fn;
99 100 101 102 103 104 105
  list->base.allow_duplicates = allow_duplicates;
#if WITH_HASHTABLE
  {
    size_t estimate = xsum (count, count / 2); /* 1.5 * count */
    if (estimate < 10)
      estimate = 10;
    list->table_size = next_prime (estimate);
106 107 108 109 110 111
    if (size_overflow_p (xtimes (list->table_size, sizeof (gl_hash_entry_t))))
      goto fail1;
    list->table =
      (gl_hash_entry_t *) calloc (list->table_size, sizeof (gl_hash_entry_t));
    if (list->table == NULL)
      goto fail1;
112 113 114 115 116
  }
#endif
  if (count > 0)
    {
      /* Assuming 2^bh - 1 <= count <= 2^(bh+1) - 2, we create a tree whose
117 118
         upper bh levels are black, and only the partially present lowest
         level is red.  */
119 120
      unsigned int bh;
      {
121 122 123
        size_t n;
        for (n = count + 1, bh = 0; n > 1; n = n >> 1)
          bh++;
124 125 126
      }

      list->root = create_subtree_with_contents (bh, count, contents);
127 128
      if (list->root == NULL)
        goto fail2;
129 130 131 132
      list->root->parent = NULL;

#if WITH_HASHTABLE
      /* Now that the tree is built, node_position() works.  Now we can
133
         add the nodes to the hash table.  */
134 135
      if (add_nodes_to_buckets (list) < 0)
        goto fail3;
136 137 138 139 140 141
#endif
    }
  else
    list->root = NULL;

  return list;
142 143 144 145 146 147 148 149 150 151 152 153

#if WITH_HASHTABLE
 fail3:
  free_subtree (list->root);
#endif
 fail2:
#if WITH_HASHTABLE
  free (list->table);
 fail1:
#endif
  free (list);
  return NULL;
154 155 156 157
}

/* Rotate left a subtree.

158 159 160 161 162
                         B                         D
                       /   \                     /   \
                     A       D       -->       B       E
                            / \               / \
                           C   E             A   C
163 164 165

   Change the tree structure, update the branch sizes.
   The caller must update the colors and register D as child of its parent.  */
166
static gl_list_node_t
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
rotate_left (gl_list_node_t b_node, gl_list_node_t d_node)
{
  gl_list_node_t a_node = b_node->left;
  gl_list_node_t c_node = d_node->left;
  gl_list_node_t e_node = d_node->right;

  b_node->right = c_node;
  d_node->left = b_node;

  d_node->parent = b_node->parent;
  b_node->parent = d_node;
  if (c_node != NULL)
    c_node->parent = b_node;

  b_node->branch_size =
    (a_node != NULL ? a_node->branch_size : 0)
    + 1 + (c_node != NULL ? c_node->branch_size : 0);
  d_node->branch_size =
    b_node->branch_size + 1 + (e_node != NULL ? e_node->branch_size : 0);

  return d_node;
}

/* Rotate right a subtree.

192 193 194 195 196
                           D                     B
                         /   \                 /   \
                       B       E     -->     A       D
                      / \                           / \
                     A   C                         C   E
197 198 199

   Change the tree structure, update the branch sizes.
   The caller must update the colors and register B as child of its parent.  */
200
static gl_list_node_t
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
rotate_right (gl_list_node_t b_node, gl_list_node_t d_node)
{
  gl_list_node_t a_node = b_node->left;
  gl_list_node_t c_node = b_node->right;
  gl_list_node_t e_node = d_node->right;

  d_node->left = c_node;
  b_node->right = d_node;

  b_node->parent = d_node->parent;
  d_node->parent = b_node;
  if (c_node != NULL)
    c_node->parent = d_node;

  d_node->branch_size =
    (c_node != NULL ? c_node->branch_size : 0)
    + 1 + (e_node != NULL ? e_node->branch_size : 0);
  b_node->branch_size =
    (a_node != NULL ? a_node->branch_size : 0) + 1 + d_node->branch_size;

  return b_node;
}

/* Ensure the tree is balanced, after an insertion operation.
   Also assigns node->color.
   parent is the given node's parent, known to be non-NULL.  */
static void
rebalance_after_add (gl_list_t list, gl_list_node_t node, gl_list_node_t parent)
{
  for (;;)
    {
      /* At this point, parent = node->parent != NULL.
233 234
         Think of node->color being RED (although node->color is not yet
         assigned.)  */
235 236 237 238
      gl_list_node_t grandparent;
      gl_list_node_t uncle;

      if (parent->color == BLACK)
239 240 241 242 243
        {
          /* A RED color for node is acceptable.  */
          node->color = RED;
          return;
        }
244 245 246

      grandparent = parent->parent;
      /* Since parent is RED, we know that
247
         grandparent is != NULL and colored BLACK.  */
248 249

      if (grandparent->left == parent)
250
        uncle = grandparent->right;
251
      else if (grandparent->right == parent)
252
        uncle = grandparent->left;
253
      else
254
        abort ();
255 256

      if (uncle != NULL && uncle->color == RED)
257 258 259 260 261 262 263 264
        {
          /* Change grandparent from BLACK to RED, and
             change parent and uncle from RED to BLACK.
             This makes it acceptable for node to be RED.  */
          node->color = RED;
          parent->color = uncle->color = BLACK;
          node = grandparent;
        }
265
      else
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        {
          /* grandparent and uncle are BLACK.  parent is RED.  node wants
             to be RED too.
             In this case, recoloring is not sufficient.  Need to perform
             one or two rotations.  */
          gl_list_node_t *grandparentp;

          if (grandparent->parent == NULL)
            grandparentp = &list->root;
          else if (grandparent->parent->left == grandparent)
            grandparentp = &grandparent->parent->left;
          else if (grandparent->parent->right == grandparent)
            grandparentp = &grandparent->parent->right;
          else
            abort ();

          if (grandparent->left == parent)
            {
              if (parent->right == node)
                {
                  /* Rotation between node and parent.  */
                  grandparent->left = rotate_left (parent, node);
                  node = parent;
                  parent = grandparent->left;
                }
              /* grandparent and uncle are BLACK.  parent and node want to be
                 RED.  parent = grandparent->left.  node = parent->left.

                      grandparent              parent
                         bh+1                   bh+1
                         /   \                 /   \
                     parent  uncle    -->   node  grandparent
                      bh      bh             bh      bh
                      / \                           / \
                   node  C                         C  uncle
                    bh   bh                       bh    bh
               */
              *grandparentp = rotate_right (parent, grandparent);
              parent->color = BLACK;
              node->color = grandparent->color = RED;
            }
          else /* grandparent->right == parent */
            {
              if (parent->left == node)
                {
                  /* Rotation between node and parent.  */
                  grandparent->right = rotate_right (node, parent);
                  node = parent;
                  parent = grandparent->right;
                }
              /* grandparent and uncle are BLACK.  parent and node want to be
                 RED.  parent = grandparent->right.  node = parent->right.

                    grandparent                    parent
                       bh+1                         bh+1
                       /   \                       /   \
                   uncle  parent     -->   grandparent  node
                     bh     bh                  bh       bh
                            / \                 / \
                           C  node          uncle  C
                          bh   bh            bh    bh
               */
              *grandparentp = rotate_left (grandparent, parent);
              parent->color = BLACK;
              node->color = grandparent->color = RED;
            }
          return;
        }
334 335 336 337 338

      /* Start again with a new (node, parent) pair.  */
      parent = node->parent;

      if (parent == NULL)
339 340 341 342 343 344
        {
          /* Change node's color from RED to BLACK.  This increases the
             tree's black-height.  */
          node->color = BLACK;
          return;
        }
345 346 347 348 349 350 351 352 353 354 355 356 357
    }
}

/* Ensure the tree is balanced, after a deletion operation.
   CHILD was a grandchild of PARENT and is now its child.  Between them,
   a black node was removed.  CHILD is also black, or NULL.
   (CHILD can also be NULL.  But PARENT is non-NULL.)  */
static void
rebalance_after_remove (gl_list_t list, gl_list_node_t child, gl_list_node_t parent)
{
  for (;;)
    {
      /* At this point, we reduced the black-height of the CHILD subtree by 1.
358 359 360
         To make up, either look for a possibility to turn a RED to a BLACK
         node, or try to reduce the black-height tree of CHILD's sibling
         subtree as well.  */
361 362 363
      gl_list_node_t *parentp;

      if (parent->parent == NULL)
364
        parentp = &list->root;
365
      else if (parent->parent->left == parent)
366
        parentp = &parent->parent->left;
367
      else if (parent->parent->right == parent)
368
        parentp = &parent->parent->right;
369
      else
370
        abort ();
371 372

      if (parent->left == child)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
        {
          gl_list_node_t sibling = parent->right;
          /* sibling's black-height is >= 1.  In particular,
             sibling != NULL.

                      parent
                       /   \
                   child  sibling
                     bh    bh+1
           */

          if (sibling->color == RED)
            {
              /* sibling is RED, hence parent is BLACK and sibling's children
                 are non-NULL and BLACK.

                      parent                       sibling
                       bh+2                         bh+2
                       /   \                        /   \
                   child  sibling     -->       parent    SR
                     bh    bh+1                  bh+1    bh+1
                            / \                  / \
                          SL   SR            child  SL
                         bh+1 bh+1             bh  bh+1
               */
              *parentp = rotate_left (parent, sibling);
              parent->color = RED;
              sibling->color = BLACK;

              /* Concentrate on the subtree of parent.  The new sibling is
                 one of the old sibling's children, and known to be BLACK.  */
              parentp = &sibling->left;
              sibling = parent->right;
            }
          /* Now we know that sibling is BLACK.

                      parent
                       /   \
                   child  sibling
                     bh    bh+1
           */
          if (sibling->right != NULL && sibling->right->color == RED)
            {
              /*
                      parent                     sibling
                     bh+1|bh+2                  bh+1|bh+2
                       /   \                      /   \
                   child  sibling    -->      parent    SR
                     bh    bh+1                bh+1    bh+1
                            / \                / \
                          SL   SR           child  SL
                          bh   bh             bh   bh
               */
              *parentp = rotate_left (parent, sibling);
              sibling->color = parent->color;
              parent->color = BLACK;
              sibling->right->color = BLACK;
              return;
            }
          else if (sibling->left != NULL && sibling->left->color == RED)
            {
              /*
                      parent                   parent
                     bh+1|bh+2                bh+1|bh+2
                       /   \                    /   \
                   child  sibling    -->    child    SL
                     bh    bh+1               bh    bh+1
                            / \                     /  \
                          SL   SR                 SLL  sibling
                          bh   bh                 bh     bh
                         /  \                           /   \
                       SLL  SLR                       SLR    SR
                       bh    bh                       bh     bh

                 where SLL, SLR, SR are all black.
               */
              parent->right = rotate_right (sibling->left, sibling);
              /* Change sibling from BLACK to RED and SL from RED to BLACK.  */
              sibling->color = RED;
              sibling = parent->right;
              sibling->color = BLACK;

              /* Now do as in the previous case.  */
              *parentp = rotate_left (parent, sibling);
              sibling->color = parent->color;
              parent->color = BLACK;
              sibling->right->color = BLACK;
              return;
            }
          else
            {
              if (parent->color == BLACK)
                {
                  /* Change sibling from BLACK to RED.  Then the entire
                     subtree at parent has decreased its black-height.
                              parent                   parent
                               bh+2                     bh+1
                               /   \                    /   \
                           child  sibling    -->    child  sibling
                             bh    bh+1               bh     bh
                   */
                  sibling->color = RED;

                  child = parent;
                }
              else
                {
                  /* Change parent from RED to BLACK, but compensate by
                     changing sibling from BLACK to RED.
                              parent                   parent
                               bh+1                     bh+1
                               /   \                    /   \
                           child  sibling    -->    child  sibling
                             bh    bh+1               bh     bh
                   */
                  parent->color = BLACK;
                  sibling->color = RED;
                  return;
                }
            }
        }
494
      else if (parent->right == child)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        {
          gl_list_node_t sibling = parent->left;
          /* sibling's black-height is >= 1.  In particular,
             sibling != NULL.

                      parent
                       /   \
                  sibling  child
                    bh+1     bh
           */

          if (sibling->color == RED)
            {
              /* sibling is RED, hence parent is BLACK and sibling's children
                 are non-NULL and BLACK.

                      parent                 sibling
                       bh+2                    bh+2
                       /   \                  /   \
                  sibling  child    -->     SR    parent
                    bh+1     ch            bh+1    bh+1
                    / \                            / \
                  SL   SR                        SL  child
                 bh+1 bh+1                      bh+1   bh
               */
              *parentp = rotate_right (sibling, parent);
              parent->color = RED;
              sibling->color = BLACK;

              /* Concentrate on the subtree of parent.  The new sibling is
                 one of the old sibling's children, and known to be BLACK.  */
              parentp = &sibling->right;
              sibling = parent->left;
            }
          /* Now we know that sibling is BLACK.

                      parent
                       /   \
                  sibling  child
                    bh+1     bh
           */
          if (sibling->left != NULL && sibling->left->color == RED)
            {
              /*
                       parent                 sibling
                      bh+1|bh+2              bh+1|bh+2
                        /   \                  /   \
                   sibling  child    -->     SL   parent
                     bh+1     bh            bh+1   bh+1
                     / \                           / \
                   SL   SR                       SR  child
                   bh   bh                       bh    bh
               */
              *parentp = rotate_right (sibling, parent);
              sibling->color = parent->color;
              parent->color = BLACK;
              sibling->left->color = BLACK;
              return;
            }
          else if (sibling->right != NULL && sibling->right->color == RED)
            {
              /*
                      parent                       parent
                     bh+1|bh+2                    bh+1|bh+2
                       /   \                        /   \
                   sibling  child    -->          SR    child
                    bh+1      bh                 bh+1     bh
                     / \                         /  \
                   SL   SR                  sibling  SRR
                   bh   bh                    bh      bh
                       /  \                  /   \
                     SRL  SRR               SL   SRL
                     bh    bh               bh    bh

                 where SL, SRL, SRR are all black.
               */
              parent->left = rotate_left (sibling, sibling->right);
              /* Change sibling from BLACK to RED and SL from RED to BLACK.  */
              sibling->color = RED;
              sibling = parent->left;
              sibling->color = BLACK;

              /* Now do as in the previous case.  */
              *parentp = rotate_right (sibling, parent);
              sibling->color = parent->color;
              parent->color = BLACK;
              sibling->left->color = BLACK;
              return;
            }
          else
            {
              if (parent->color == BLACK)
                {
                  /* Change sibling from BLACK to RED.  Then the entire
                     subtree at parent has decreased its black-height.
                              parent                   parent
                               bh+2                     bh+1
                               /   \                    /   \
                           sibling  child    -->    sibling  child
                            bh+1      bh              bh       bh
                   */
                  sibling->color = RED;

                  child = parent;
                }
              else
                {
                  /* Change parent from RED to BLACK, but compensate by
                     changing sibling from BLACK to RED.
                              parent                   parent
                               bh+1                     bh+1
                               /   \                    /   \
                           sibling  child    -->    sibling  child
                            bh+1      bh              bh       bh
                   */
                  parent->color = BLACK;
                  sibling->color = RED;
                  return;
                }
            }
        }
616
      else
617
        abort ();
618 619 620 621 622 623

      /* Start again with a new (child, parent) pair.  */
      parent = child->parent;

#if 0 /* Already handled.  */
      if (child != NULL && child->color == RED)
624 625 626 627
        {
          child->color = BLACK;
          return;
        }
628 629 630
#endif

      if (parent == NULL)
631
        return;
632 633 634
    }
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
static void
gl_tree_remove_node_from_tree (gl_list_t list, gl_list_node_t node)
{
  gl_list_node_t parent = node->parent;

  if (node->left == NULL)
    {
      /* Replace node with node->right.  */
      gl_list_node_t child = node->right;

      if (child != NULL)
        {
          child->parent = parent;
          /* Since node->left == NULL, child must be RED and of height 1,
             hence node must have been BLACK.  Recolor the child.  */
          child->color = BLACK;
        }
      if (parent == NULL)
        list->root = child;
      else
        {
          if (parent->left == node)
            parent->left = child;
          else /* parent->right == node */
            parent->right = child;

          /* Update branch_size fields of the parent nodes.  */
          {
            gl_list_node_t p;

            for (p = parent; p != NULL; p = p->parent)
              p->branch_size--;
          }

          if (child == NULL && node->color == BLACK)
            rebalance_after_remove (list, child, parent);
        }
    }
  else if (node->right == NULL)
    {
      /* It is not absolutely necessary to treat this case.  But the more
         general case below is more complicated, hence slower.  */
      /* Replace node with node->left.  */
      gl_list_node_t child = node->left;

      child->parent = parent;
      /* Since node->right == NULL, child must be RED and of height 1,
         hence node must have been BLACK.  Recolor the child.  */
      child->color = BLACK;
      if (parent == NULL)
        list->root = child;
      else
        {
          if (parent->left == node)
            parent->left = child;
          else /* parent->right == node */
            parent->right = child;

          /* Update branch_size fields of the parent nodes.  */
          {
            gl_list_node_t p;

            for (p = parent; p != NULL; p = p->parent)
              p->branch_size--;
          }
        }
    }
  else
    {
      /* Replace node with the rightmost element of the node->left subtree.  */
      gl_list_node_t subst;
      gl_list_node_t subst_parent;
      gl_list_node_t child;
      color_t removed_color;

      for (subst = node->left; subst->right != NULL; )
        subst = subst->right;

      subst_parent = subst->parent;

      child = subst->left;

      removed_color = subst->color;

      /* The case subst_parent == node is special:  If we do nothing special,
         we get confusion about node->left, subst->left and child->parent.
           subst_parent == node
           <==> The 'for' loop above terminated immediately.
           <==> subst == subst_parent->left
                [otherwise subst == subst_parent->right]
         In this case, we would need to first set
           child->parent = node; node->left = child;
         and later - when we copy subst into node's position - again
           child->parent = subst; subst->left = child;
         Altogether a no-op.  */
      if (subst_parent != node)
        {
          if (child != NULL)
            child->parent = subst_parent;
          subst_parent->right = child;
        }

      /* Update branch_size fields of the parent nodes.  */
      {
        gl_list_node_t p;

        for (p = subst_parent; p != NULL; p = p->parent)
          p->branch_size--;
      }

      /* Copy subst into node's position.
         (This is safer than to copy subst's value into node, keep node in
         place, and free subst.)  */
      if (subst_parent != node)
        {
          subst->left = node->left;
          subst->left->parent = subst;
        }
      subst->right = node->right;
      subst->right->parent = subst;
      subst->color = node->color;
      subst->branch_size = node->branch_size;
      subst->parent = parent;
      if (parent == NULL)
        list->root = subst;
      else if (parent->left == node)
        parent->left = subst;
      else /* parent->right == node */
        parent->right = subst;

      if (removed_color == BLACK)
        {
          if (child != NULL && child->color == RED)
            /* Recolor the child.  */
            child->color = BLACK;
          else
            /* Rebalancing starts at child's parent, that is subst_parent -
               except when subst_parent == node.  In this case, we need to use
               its replacement, subst.  */
            rebalance_after_remove (list, child,
                                    subst_parent != node ? subst_parent : subst);
        }
    }
}

780
static gl_list_node_t
781
gl_tree_nx_add_first (gl_list_t list, const void *elt)
782 783
{
  /* Create new node.  */
784 785 786 787 788
  gl_list_node_t new_node =
    (struct gl_list_node_impl *) malloc (sizeof (struct gl_list_node_impl));

  if (new_node == NULL)
    return NULL;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

  new_node->left = NULL;
  new_node->right = NULL;
  new_node->branch_size = 1;
  new_node->value = elt;
#if WITH_HASHTABLE
  new_node->h.hashcode =
    (list->base.hashcode_fn != NULL
     ? list->base.hashcode_fn (new_node->value)
     : (size_t)(uintptr_t) new_node->value);
#endif

  /* Add it to the tree.  */
  if (list->root == NULL)
    {
      new_node->color = BLACK;
      list->root = new_node;
      new_node->parent = NULL;
    }
  else
    {
      gl_list_node_t node;

      for (node = list->root; node->left != NULL; )
813
        node = node->left;
814 815 816 817 818 819

      node->left = new_node;
      new_node->parent = node;

      /* Update branch_size fields of the parent nodes.  */
      {
820
        gl_list_node_t p;
821

822 823
        for (p = node; p != NULL; p = p->parent)
          p->branch_size++;
824 825 826 827 828 829 830 831 832 833
      }

      /* Color and rebalance.  */
      rebalance_after_add (list, new_node, node);
    }

#if WITH_HASHTABLE
  /* Add node to the hash table.
     Note that this is only possible _after_ the node has been added to the
     tree structure, because add_to_bucket() uses node_position().  */
834 835 836 837 838 839
  if (add_to_bucket (list, new_node) < 0)
    {
      gl_tree_remove_node_from_tree (list, new_node);
      free (new_node);
      return NULL;
    }
840 841 842 843 844 845 846
  hash_resize_after_add (list);
#endif

  return new_node;
}

static gl_list_node_t
847
gl_tree_nx_add_last (gl_list_t list, const void *elt)
848 849
{
  /* Create new node.  */
850 851 852 853 854
  gl_list_node_t new_node =
    (struct gl_list_node_impl *) malloc (sizeof (struct gl_list_node_impl));

  if (new_node == NULL)
    return NULL;
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

  new_node->left = NULL;
  new_node->right = NULL;
  new_node->branch_size = 1;
  new_node->value = elt;
#if WITH_HASHTABLE
  new_node->h.hashcode =
    (list->base.hashcode_fn != NULL
     ? list->base.hashcode_fn (new_node->value)
     : (size_t)(uintptr_t) new_node->value);
#endif

  /* Add it to the tree.  */
  if (list->root == NULL)
    {
      new_node->color = BLACK;
      list->root = new_node;
      new_node->parent = NULL;
    }
  else
    {
      gl_list_node_t node;

      for (node = list->root; node->right != NULL; )
879
        node = node->right;
880 881 882 883 884 885

      node->right = new_node;
      new_node->parent = node;

      /* Update branch_size fields of the parent nodes.  */
      {
886
        gl_list_node_t p;
887

888 889
        for (p = node; p != NULL; p = p->parent)
          p->branch_size++;
890 891 892 893 894 895 896 897 898 899
      }

      /* Color and rebalance.  */
      rebalance_after_add (list, new_node, node);
    }

#if WITH_HASHTABLE
  /* Add node to the hash table.
     Note that this is only possible _after_ the node has been added to the
     tree structure, because add_to_bucket() uses node_position().  */
900 901 902 903 904 905
  if (add_to_bucket (list, new_node) < 0)
    {
      gl_tree_remove_node_from_tree (list, new_node);
      free (new_node);
      return NULL;
    }
906 907 908 909 910 911 912
  hash_resize_after_add (list);
#endif

  return new_node;
}

static gl_list_node_t
913
gl_tree_nx_add_before (gl_list_t list, gl_list_node_t node, const void *elt)
914 915
{
  /* Create new node.  */
916 917 918 919 920
  gl_list_node_t new_node =
    (struct gl_list_node_impl *) malloc (sizeof (struct gl_list_node_impl));

  if (new_node == NULL)
    return NULL;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

  new_node->left = NULL;
  new_node->right = NULL;
  new_node->branch_size = 1;
  new_node->value = elt;
#if WITH_HASHTABLE
  new_node->h.hashcode =
    (list->base.hashcode_fn != NULL
     ? list->base.hashcode_fn (new_node->value)
     : (size_t)(uintptr_t) new_node->value);
#endif

  /* Add it to the tree.  */
  if (node->left == NULL)
    node->left = new_node;
  else
    {
      for (node = node->left; node->right != NULL; )
939
        node = node->right;
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
      node->right = new_node;
    }
  new_node->parent = node;

  /* Update branch_size fields of the parent nodes.  */
  {
    gl_list_node_t p;

    for (p = node; p != NULL; p = p->parent)
      p->branch_size++;
  }

  /* Color and rebalance.  */
  rebalance_after_add (list, new_node, node);

#if WITH_HASHTABLE
  /* Add node to the hash table.
     Note that this is only possible _after_ the node has been added to the
     tree structure, because add_to_bucket() uses node_position().  */
959 960 961 962 963 964
  if (add_to_bucket (list, new_node) < 0)
    {
      gl_tree_remove_node_from_tree (list, new_node);
      free (new_node);
      return NULL;
    }
965 966 967 968 969 970 971
  hash_resize_after_add (list);
#endif

  return new_node;
}

static gl_list_node_t
972
gl_tree_nx_add_after (gl_list_t list, gl_list_node_t node, const void *elt)
973 974
{
  /* Create new node.  */
975 976 977 978 979
  gl_list_node_t new_node =
    (struct gl_list_node_impl *) malloc (sizeof (struct gl_list_node_impl));

  if (new_node == NULL)
    return NULL;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

  new_node->left = NULL;
  new_node->right = NULL;
  new_node->branch_size = 1;
  new_node->value = elt;
#if WITH_HASHTABLE
  new_node->h.hashcode =
    (list->base.hashcode_fn != NULL
     ? list->base.hashcode_fn (new_node->value)
     : (size_t)(uintptr_t) new_node->value);
#endif

  /* Add it to the tree.  */
  if (node->right == NULL)
    node->right = new_node;
  else
    {
      for (node = node->right; node->left != NULL; )
998
        node = node->left;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
      node->left = new_node;
    }
  new_node->parent = node;

  /* Update branch_size fields of the parent nodes.  */
  {
    gl_list_node_t p;

    for (p = node; p != NULL; p = p->parent)
      p->branch_size++;
  }

  /* Color and rebalance.  */
  rebalance_after_add (list, new_node, node);

#if WITH_HASHTABLE
  /* Add node to the hash table.
     Note that this is only possible _after_ the node has been added to the
     tree structure, because add_to_bucket() uses node_position().  */
1018 1019 1020 1021 1022 1023
  if (add_to_bucket (list, new_node) < 0)
    {
      gl_tree_remove_node_from_tree (list, new_node);
      free (new_node);
      return NULL;
    }
1024 1025 1026 1027 1028
  hash_resize_after_add (list);
#endif

  return new_node;
}