Commit 0b979eae authored by Romuald Conty's avatar Romuald Conty

libnfc can now be compiled using autotools and libtool.

It now provide a pkg-config file allowing a simplified compilation against libnfc.
parent bbc4c424
Roel Verdult <roel@libnfc.org>
This diff is collapsed.
Installation Instructions
*************************
Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005,
2006, 2007 Free Software Foundation, Inc.
This file is free documentation; the Free Software Foundation gives
unlimited permission to copy, distribute and modify it.
Basic Installation
==================
Briefly, the shell commands `./configure; make; make install' should
configure, build, and install this package. The following
more-detailed instructions are generic; see the `README' file for
instructions specific to this package.
The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, and a
file `config.log' containing compiler output (useful mainly for
debugging `configure').
It can also use an optional file (typically called `config.cache'
and enabled with `--cache-file=config.cache' or simply `-C') that saves
the results of its tests to speed up reconfiguring. Caching is
disabled by default to prevent problems with accidental use of stale
cache files.
If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release. If you are using the cache, and at
some point `config.cache' contains results you don't want to keep, you
may remove or edit it.
The file `configure.ac' (or `configure.in') is used to create
`configure' by a program called `autoconf'. You need `configure.ac' if
you want to change it or regenerate `configure' using a newer version
of `autoconf'.
The simplest way to compile this package is:
1. `cd' to the directory containing the package's source code and type
`./configure' to configure the package for your system.
Running `configure' might take a while. While running, it prints
some messages telling which features it is checking for.
2. Type `make' to compile the package.
3. Optionally, type `make check' to run any self-tests that come with
the package.
4. Type `make install' to install the programs and any data files and
documentation.
5. You can remove the program binaries and object files from the
source code directory by typing `make clean'. To also remove the
files that `configure' created (so you can compile the package for
a different kind of computer), type `make distclean'. There is
also a `make maintainer-clean' target, but that is intended mainly
for the package's developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.
6. Often, you can also type `make uninstall' to remove the installed
files again.
Compilers and Options
=====================
Some systems require unusual options for compilation or linking that the
`configure' script does not know about. Run `./configure --help' for
details on some of the pertinent environment variables.
You can give `configure' initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:
./configure CC=c99 CFLAGS=-g LIBS=-lposix
*Note Defining Variables::, for more details.
Compiling For Multiple Architectures
====================================
You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you can use GNU `make'. `cd' to the
directory where you want the object files and executables to go and run
the `configure' script. `configure' automatically checks for the
source code in the directory that `configure' is in and in `..'.
With a non-GNU `make', it is safer to compile the package for one
architecture at a time in the source code directory. After you have
installed the package for one architecture, use `make distclean' before
reconfiguring for another architecture.
Installation Names
==================
By default, `make install' installs the package's commands under
`/usr/local/bin', include files under `/usr/local/include', etc. You
can specify an installation prefix other than `/usr/local' by giving
`configure' the option `--prefix=PREFIX'.
You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
pass the option `--exec-prefix=PREFIX' to `configure', the package uses
PREFIX as the prefix for installing programs and libraries.
Documentation and other data files still use the regular prefix.
In addition, if you use an unusual directory layout you can give
options like `--bindir=DIR' to specify different values for particular
kinds of files. Run `configure --help' for a list of the directories
you can set and what kinds of files go in them.
If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.
Optional Features
=================
Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
is something like `gnu-as' or `x' (for the X Window System). The
`README' should mention any `--enable-' and `--with-' options that the
package recognizes.
For packages that use the X Window System, `configure' can usually
find the X include and library files automatically, but if it doesn't,
you can use the `configure' options `--x-includes=DIR' and
`--x-libraries=DIR' to specify their locations.
Specifying the System Type
==========================
There may be some features `configure' cannot figure out automatically,
but needs to determine by the type of machine the package will run on.
Usually, assuming the package is built to be run on the _same_
architectures, `configure' can figure that out, but if it prints a
message saying it cannot guess the machine type, give it the
`--build=TYPE' option. TYPE can either be a short name for the system
type, such as `sun4', or a canonical name which has the form:
CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:
OS KERNEL-OS
See the file `config.sub' for the possible values of each field. If
`config.sub' isn't included in this package, then this package doesn't
need to know the machine type.
If you are _building_ compiler tools for cross-compiling, you should
use the option `--target=TYPE' to select the type of system they will
produce code for.
If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with `--host=TYPE'.
Sharing Defaults
================
If you want to set default values for `configure' scripts to share, you
can create a site shell script called `config.site' that gives default
values for variables like `CC', `cache_file', and `prefix'.
`configure' looks for `PREFIX/share/config.site' if it exists, then
`PREFIX/etc/config.site' if it exists. Or, you can set the
`CONFIG_SITE' environment variable to the location of the site script.
A warning: not all `configure' scripts look for a site script.
Defining Variables
==================
Variables not defined in a site shell script can be set in the
environment passed to `configure'. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the `configure' command line, using `VAR=value'. For example:
./configure CC=/usr/local2/bin/gcc
causes the specified `gcc' to be used as the C compiler (unless it is
overridden in the site shell script).
Unfortunately, this technique does not work for `CONFIG_SHELL' due to
an Autoconf bug. Until the bug is fixed you can use this workaround:
CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash
`configure' Invocation
======================
`configure' recognizes the following options to control how it operates.
`--help'
`-h'
Print a summary of the options to `configure', and exit.
`--version'
`-V'
Print the version of Autoconf used to generate the `configure'
script, and exit.
`--cache-file=FILE'
Enable the cache: use and save the results of the tests in FILE,
traditionally `config.cache'. FILE defaults to `/dev/null' to
disable caching.
`--config-cache'
`-C'
Alias for `--cache-file=config.cache'.
`--quiet'
`--silent'
`-q'
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to `/dev/null' (any error
messages will still be shown).
`--srcdir=DIR'
Look for the package's source code in directory DIR. Usually
`configure' can determine that directory automatically.
`configure' also accepts some other, not widely useful, options. Run
`configure --help' for more details.
bin_PROGRAMS = anticol list mftool relay emulate
# set the include path found by configure
INCLUDES= $(all_includes)
nfcinclude_HEADERS = libnfc.h bitutils.h defines.h dev_acr122.h dev_pn531.h types.h mifaretag.h devices.h
nfcincludedir = $(includedir)/libnfc
lib_LTLIBRARIES = libnfc.la
libnfc_la_CFLAGS = @LIBUSB_CFLAGS@ @LIBPCSCLITE_CFLAGS@
libnfc_la_SOURCES = dev_pn531.c dev_acr122.c bitutils.c libnfc.c
libnfc_la_LIBADD = @LIBUSB_LIBS@ @LIBPCSCLITE_LIBS@
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libnfc.pc
anticol_SOURCES = anticol.c
anticol_LDADD = libnfc.la
list_SOURCES = list.c
list_LDADD = libnfc.la
mftool_SOURCES = mftool.c
mftool_LDADD = libnfc.la
relay_SOURCES = relay.c
relay_LDADD = libnfc.la
emulate_SOURCES = emulate.c
emulate_LDADD = libnfc.la
#!/bin/sh
rm -rf autom4te.cache
rm -f aclocal.m4 ltmain.sh
touch README
echo "Running aclocal..." ; aclocal $ACLOCAL_FLAGS || exit 1
echo "Running autoheader..." ; autoheader || exit 1
echo "Running autoconf..." ; autoconf || exit 1
echo "Running libtoolize..." ; (libtoolize --copy --automake || glibtoolize --automake) || exit 1
echo "Running automake..." ; automake --add-missing --copy --gnu || exit 1
if [ -z "$NOCONFIGURE" ]; then
./configure "$@"
fi
AC_INIT(libnfc, 1.1.1, roel@libnfc.org)
AC_CONFIG_HEADER(config.h)
AM_INIT_AUTOMAKE
AC_LANG_C
AC_PROG_CC
AC_PROG_MAKE_SET
AC_PROG_LIBTOOL
AC_PROG_RANLIB
AC_PATH_PROG(PKG_CONFIG, pkg-config)
# Checks for header files.
AC_HEADER_STDC
AC_CHECK_HEADERS([stdlib.h])
# libusb
PKG_CHECK_MODULES(LIBUSB, libusb, [WITH_USB=1], [WITH_USB=0])
if test "$WITH_USB" == "0" ; then
AC_MSG_ERROR([libusb is mandatory.])
fi
AC_SUBST(LIBUSB_LIBS)
AC_SUBST(LIBUSB_CFLAGS)
# libpcsclite
PKG_CHECK_MODULES(LIBPCSCLITE, libpcsclite, [WITH_PCSC=1], [WITH_PCSC=0])
if test "$WITH_PCSC" == "0" ; then
AC_MSG_ERROR([libpcsclite is mandatory.])
fi
AC_SUBST(LIBPCSCLITE_LIBS)
AC_SUBST(LIBPCSCLITE_CFLAGS)
AC_CONFIG_FILES([
Makefile
libnfc.pc
])
AC_OUTPUT
#!/bin/sh
#
# install - install a program, script, or datafile
# This comes from X11R5 (mit/util/scripts/install.sh).
#
# Copyright 1991 by the Massachusetts Institute of Technology
#
# Permission to use, copy, modify, distribute, and sell this software and its
# documentation for any purpose is hereby granted without fee, provided that
# the above copyright notice appear in all copies and that both that
# copyright notice and this permission notice appear in supporting
# documentation, and that the name of M.I.T. not be used in advertising or
# publicity pertaining to distribution of the software without specific,
# written prior permission. M.I.T. makes no representations about the
# suitability of this software for any purpose. It is provided "as is"
# without express or implied warranty.
#
# Calling this script install-sh is preferred over install.sh, to prevent
# `make' implicit rules from creating a file called install from it
# when there is no Makefile.
#
# This script is compatible with the BSD install script, but was written
# from scratch. It can only install one file at a time, a restriction
# shared with many OS's install programs.
# set DOITPROG to echo to test this script
# Don't use :- since 4.3BSD and earlier shells don't like it.
doit="${DOITPROG-}"
# put in absolute paths if you don't have them in your path; or use env. vars.
mvprog="${MVPROG-mv}"
cpprog="${CPPROG-cp}"
chmodprog="${CHMODPROG-chmod}"
chownprog="${CHOWNPROG-chown}"
chgrpprog="${CHGRPPROG-chgrp}"
stripprog="${STRIPPROG-strip}"
rmprog="${RMPROG-rm}"
mkdirprog="${MKDIRPROG-mkdir}"
transformbasename=""
transform_arg=""
instcmd="$mvprog"
chmodcmd="$chmodprog 0755"
chowncmd=""
chgrpcmd=""
stripcmd=""
rmcmd="$rmprog -f"
mvcmd="$mvprog"
src=""
dst=""
dir_arg=""
while [ x"$1" != x ]; do
case $1 in
-c) instcmd=$cpprog
shift
continue;;
-d) dir_arg=true
shift
continue;;
-m) chmodcmd="$chmodprog $2"
shift
shift
continue;;
-o) chowncmd="$chownprog $2"
shift
shift
continue;;
-g) chgrpcmd="$chgrpprog $2"
shift
shift
continue;;
-s) stripcmd=$stripprog
shift
continue;;
-t=*) transformarg=`echo $1 | sed 's/-t=//'`
shift
continue;;
-b=*) transformbasename=`echo $1 | sed 's/-b=//'`
shift
continue;;
*) if [ x"$src" = x ]
then
src=$1
else
# this colon is to work around a 386BSD /bin/sh bug
:
dst=$1
fi
shift
continue;;
esac
done
if [ x"$src" = x ]
then
echo "$0: no input file specified" >&2
exit 1
else
:
fi
if [ x"$dir_arg" != x ]; then
dst=$src
src=""
if [ -d "$dst" ]; then
instcmd=:
chmodcmd=""
else
instcmd=$mkdirprog
fi
else
# Waiting for this to be detected by the "$instcmd $src $dsttmp" command
# might cause directories to be created, which would be especially bad
# if $src (and thus $dsttmp) contains '*'.
if [ -f "$src" ] || [ -d "$src" ]
then
:
else
echo "$0: $src does not exist" >&2
exit 1
fi
if [ x"$dst" = x ]
then
echo "$0: no destination specified" >&2
exit 1
else
:
fi
# If destination is a directory, append the input filename; if your system
# does not like double slashes in filenames, you may need to add some logic
if [ -d "$dst" ]
then
dst=$dst/`basename "$src"`
else
:
fi
fi
## this sed command emulates the dirname command
dstdir=`echo "$dst" | sed -e 's,[^/]*$,,;s,/$,,;s,^$,.,'`
# Make sure that the destination directory exists.
# this part is taken from Noah Friedman's mkinstalldirs script
# Skip lots of stat calls in the usual case.
if [ ! -d "$dstdir" ]; then
defaultIFS='
'
IFS="${IFS-$defaultIFS}"
oIFS=$IFS
# Some sh's can't handle IFS=/ for some reason.
IFS='%'
set - `echo "$dstdir" | sed -e 's@/@%@g' -e 's@^%@/@'`
IFS=$oIFS
pathcomp=''
while [ $# -ne 0 ] ; do
pathcomp=$pathcomp$1
shift
if [ ! -d "$pathcomp" ] ;
then
$mkdirprog "$pathcomp"
else
:
fi
pathcomp=$pathcomp/
done
fi
if [ x"$dir_arg" != x ]
then
$doit $instcmd "$dst" &&
if [ x"$chowncmd" != x ]; then $doit $chowncmd "$dst"; else : ; fi &&
if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd "$dst"; else : ; fi &&
if [ x"$stripcmd" != x ]; then $doit $stripcmd "$dst"; else : ; fi &&
if [ x"$chmodcmd" != x ]; then $doit $chmodcmd "$dst"; else : ; fi
else
# If we're going to rename the final executable, determine the name now.
if [ x"$transformarg" = x ]
then
dstfile=`basename "$dst"`
else
dstfile=`basename "$dst" $transformbasename |
sed $transformarg`$transformbasename
fi
# don't allow the sed command to completely eliminate the filename
if [ x"$dstfile" = x ]
then
dstfile=`basename "$dst"`
else
:
fi
# Make a couple of temp file names in the proper directory.
dsttmp=$dstdir/#inst.$$#
rmtmp=$dstdir/#rm.$$#
# Trap to clean up temp files at exit.
trap 'status=$?; rm -f "$dsttmp" "$rmtmp" && exit $status' 0
trap '(exit $?); exit' 1 2 13 15
# Move or copy the file name to the temp name
$doit $instcmd "$src" "$dsttmp" &&
# and set any options; do chmod last to preserve setuid bits
# If any of these fail, we abort the whole thing. If we want to
# ignore errors from any of these, just make sure not to ignore
# errors from the above "$doit $instcmd $src $dsttmp" command.
if [ x"$chowncmd" != x ]; then $doit $chowncmd "$dsttmp"; else :;fi &&
if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd "$dsttmp"; else :;fi &&
if [ x"$stripcmd" != x ]; then $doit $stripcmd "$dsttmp"; else :;fi &&
if [ x"$chmodcmd" != x ]; then $doit $chmodcmd "$dsttmp"; else :;fi &&
# Now remove or move aside any old file at destination location. We try this
# two ways since rm can't unlink itself on some systems and the destination
# file might be busy for other reasons. In this case, the final cleanup
# might fail but the new file should still install successfully.
{
if [ -f "$dstdir/$dstfile" ]
then
$doit $rmcmd -f "$dstdir/$dstfile" 2>/dev/null ||
$doit $mvcmd -f "$dstdir/$dstfile" "$rmtmp" 2>/dev/null ||
{
echo "$0: cannot unlink or rename $dstdir/$dstfile" >&2
(exit 1); exit
}
else
:
fi
} &&
# Now rename the file to the real destination.
$doit $mvcmd "$dsttmp" "$dstdir/$dstfile"
fi &&
# The final little trick to "correctly" pass the exit status to the exit trap.
{
(exit 0); exit
}
prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
includedir=@includedir@
Name: libnfc
Description: Near Field Communication (NFC) library
Version: @VERSION@
Requires: libusb, libpcsclite
Libs: -L${libdir} -lmytoolkit
Cflags: -I${includedir}
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment