Commit 1eda9053 authored by Dominique Dumont's avatar Dominique Dumont

Update upstream source from tag 'upstream/1.1.0_rc1'

Update to upstream version '1.1.0~rc1'
with Debian dir 08f0afd4c2454e5829e22ccdde8a2292584f2f02
parents 7bad5e9b 4055a943
language: c
compiler:
- gcc
script:
- make travis_mtest
- head -n 5 test.log
- tail -n 2 test.log
- ./testme.sh --with-cc=gcc --with-low-mp
branches:
only:
- master
- develop
- /^release\/.*$/
notifications:
irc: "chat.freenode.net#libtom-notifications"
LibTomMath is licensed under DUAL licensing terms.
Choose and use the license of your needs.
[LICENSE #1]
LibTomMath is public domain. As should all quality software be.
Tom St Denis
[/LICENSE #1]
[LICENSE #2]
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.
[/LICENSE #2]
The LibTom license
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
[![Build Status - master](https://travis-ci.org/libtom/libtommath.png?branch=master)](https://travis-ci.org/libtom/libtommath)
# libtommath
[![Build Status - develop](https://travis-ci.org/libtom/libtommath.png?branch=develop)](https://travis-ci.org/libtom/libtommath)
This is the git repository for [LibTomMath](http://www.libtom.net/LibTomMath/), a free open source portable number theoretic multiple-precision integer (MPI) library written entirely in C.
This is the git repository for [LibTomMath](http://www.libtom.org/), a free open source portable number theoretic multiple-precision integer (MPI) library written entirely in C.
## Build Status
master: [![Build Status](https://api.travis-ci.org/libtom/libtommath.png?branch=master)](https://travis-ci.org/libtom/libtommath)
develop: [![Build Status](https://api.travis-ci.org/libtom/libtommath.png?branch=develop)](https://travis-ci.org/libtom/libtommath)
API/ABI changes: [check here](https://abi-laboratory.pro/tracker/timeline/libtommath/)
## Summary
The `develop` branch contains the in-development version. Stable releases are tagged.
......@@ -10,6 +18,8 @@ Documentation is built from the LaTeX file `bn.tex`. There is also limited docum
The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`, there are several other build targets, see the makefile for details. There are also makefiles for certain specific platforms.
## Testing
Tests are located in `demo/` and can be built in two flavors.
* `make test` creates a test binary that is intended to be run against `mtest`. `mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./test`. `mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm
* `make test_standalone` creates a stand-alone test binary that executes several test routines.
# Artistic Style, see http://astyle.sourceforge.net/
# full documentation, see: http://astyle.sourceforge.net/astyle.html
#
# usage:
# astyle --options=astylerc *.[ch]
## Bracket Style Options
style=kr
## Tab Options
indent=spaces=3
## Bracket Modify Options
## Indentation Options
min-conditional-indent=0
## Padding Options
pad-header
unpad-paren
align-pointer=name
## Formatting Options
break-after-logical
max-code-length=120
convert-tabs
mode=c
#include <tommath_private.h>
#include "tommath_private.h"
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
......@@ -9,31 +9,28 @@
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
* SPDX-License-Identifier: Unlicense
*/
static const struct {
int code;
const char *msg;
int code;
const char *msg;
} msgs[] = {
{ MP_OKAY, "Successful" },
{ MP_MEM, "Out of heap" },
{ MP_VAL, "Value out of range" }
{ MP_OKAY, "Successful" },
{ MP_MEM, "Out of heap" },
{ MP_VAL, "Value out of range" }
};
/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{
int x;
size_t x;
/* scan the lookup table for the given message */
for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
if (msgs[x].code == code) {
return msgs[x].msg;
}
for (x = 0; x < (sizeof(msgs) / sizeof(msgs[0])); x++) {
if (msgs[x].code == code) {
return msgs[x].msg;
}
}
/* generic reply for invalid code */
......@@ -42,6 +39,6 @@ const char *mp_error_to_string(int code)
#endif
/* ref: HEAD -> master, tag: v1.0.1 */
/* git commit: 5953f62e42b24af93748b1ee5e1d062e242c2546 */
/* commit time: 2017-08-29 22:27:36 +0200 */
/* ref: HEAD -> release/1.1.0, tag: v1.1.0-rc1 */
/* git commit: 247e714248535c851a2e27382561fdb3525ffe8d */
/* commit time: 2018-12-31 12:13:59 +0100 */
#include <tommath_private.h>
#include "tommath_private.h"
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
......@@ -9,140 +9,152 @@
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
* SPDX-License-Identifier: Unlicense
*/
/* computes the modular inverse via binary extended euclidean algorithm,
* that is c = 1/a mod b
/* computes the modular inverse via binary extended euclidean algorithm,
* that is c = 1/a mod b
*
* Based on slow invmod except this is optimized for the case where b is
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int x, y, u, v, B, D;
int res, neg;
/* 2. [modified] b must be odd */
if (mp_iseven (b) == MP_YES) {
return MP_VAL;
}
/* init all our temps */
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
return res;
}
/* x == modulus, y == value to invert */
if ((res = mp_copy (b, &x)) != MP_OKAY) {
goto LBL_ERR;
}
/* we need y = |a| */
if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
goto LBL_ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto LBL_ERR;
}
mp_set (&D, 1);
mp_int x, y, u, v, B, D;
int res, neg;
top:
/* 4. while u is even do */
while (mp_iseven (&u) == MP_YES) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto LBL_ERR;
}
/* 4.2 if B is odd then */
if (mp_isodd (&B) == MP_YES) {
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* B = B/2 */
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 2. [modified] b must be odd */
if (mp_iseven(b) == MP_YES) {
return MP_VAL;
}
/* 5. while v is even do */
while (mp_iseven (&v) == MP_YES) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
/* init all our temps */
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
return res;
}
/* x == modulus, y == value to invert */
if ((res = mp_copy(b, &x)) != MP_OKAY) {
goto LBL_ERR;
}
/* 5.2 if D is odd then */
if (mp_isodd (&D) == MP_YES) {
/* D = (D-x)/2 */
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* D = D/2 */
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
}
/* we need y = |a| */
if ((res = mp_mod(a, b, &y)) != MP_OKAY) {
goto LBL_ERR;
}
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
/* if one of x,y is zero return an error! */
if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) {
res = MP_VAL;
goto LBL_ERR;
}
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy(&x, &u)) != MP_OKAY) {
goto LBL_ERR;
}
} else {
/* v - v - u, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
}
if ((res = mp_copy(&y, &v)) != MP_OKAY) {
goto LBL_ERR;
}
}
mp_set(&D, 1uL);
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == MP_NO) {
goto top;
}
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto LBL_ERR;
}
/* b is now the inverse */
neg = a->sign;
while (D.sign == MP_NEG) {
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
top:
/* 4. while u is even do */
while (mp_iseven(&u) == MP_YES) {
/* 4.1 u = u/2 */
if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
goto LBL_ERR;
}
/* 4.2 if B is odd then */
if (mp_isodd(&B) == MP_YES) {
if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* B = B/2 */
if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 5. while v is even do */
while (mp_iseven(&v) == MP_YES) {
/* 5.1 v = v/2 */
if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
goto LBL_ERR;
}
/* 5.2 if D is odd then */
if (mp_isodd(&D) == MP_YES) {
/* D = (D-x)/2 */
if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* D = D/2 */
if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 6. if u >= v then */
if (mp_cmp(&u, &v) != MP_LT) {
/* u = u - v, B = B - D */
if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
goto LBL_ERR;
}
} else {
/* v - v - u, D = D - B */
if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero(&u) == MP_NO) {
goto top;
}
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d(&v, 1uL) != MP_EQ) {
res = MP_VAL;
goto LBL_ERR;
}
}
mp_exch (&D, c);
c->sign = neg;
res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
return res;
}
/* b is now the inverse */
neg = a->sign;
while (D.sign == MP_NEG) {
if ((res = mp_add(&D, b, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* too big */
while (mp_cmp_mag(&D, b) != MP_LT) {
if ((res = mp_sub(&D, b, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
mp_exch(&D, c);
c->sign = neg;
res = MP_OKAY;
LBL_ERR:
mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
return res;
}
#endif
/* ref: HEAD -> master, tag: v1.0.1 */
/* git commit: 5953f62e42b24af93748b1ee5e1d062e242c2546 */
/* commit time: 2017-08-29 22:27:36 +0200 */
/* ref: HEAD -> release/1.1.0, tag: v1.1.0-rc1 */
/* git commit: 247e714248535c851a2e27382561fdb3525ffe8d */
/* commit time: 2018-12-31 12:13:59 +0100 */
#include <tommath_private.h>
#include "tommath_private.h"
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
......@@ -9,10 +9,7 @@
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
* SPDX-License-Identifier: Unlicense
*/
/* computes xR**-1 == x (mod N) via Montgomery Reduction
......@@ -23,150 +20,154 @@
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];
/* get old used count */
olduse = x->used;
/* grow a as required */
if (x->alloc < (n->used + 1)) {
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
return res;
}
}
/* first we have to get the digits of the input into
* an array of double precision words W[...]
*/
{
mp_word *_W;
mp_digit *tmpx;
/* alias for the W[] array */
_W = W;
/* alias for the digits of x*/
tmpx = x->dp;
/* copy the digits of a into W[0..a->used-1] */
for (ix = 0; ix < x->used; ix++) {
*_W++ = *tmpx++;
}
/* zero the high words of W[a->used..m->used*2] */
for (; ix < ((n->used * 2) + 1); ix++) {
*_W++ = 0;
}
}
/* now we proceed to zero successive digits
* from the least significant upwards
*/
for (ix = 0; ix < n->used; ix++) {
/* mu = ai * m' mod b
*
* We avoid a double precision multiplication (which isn't required)
* by casting the value down to a mp_digit. Note this requires
* that W[ix-1] have the carry cleared (see after the inner loop)
*/
mp_digit mu;
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
/* a = a + mu * m * b**i
*
* This is computed in place and on the fly. The multiplication
* by b**i is handled by offseting which columns the results
* are added to.
*
* Note the comba method normally doesn't handle carries in the
* inner loop In this case we fix the carry from the previous
* column since the Montgomery reduction requires digits of the
* result (so far) [see above] to work. This is
* handled by fixing up one carry after the inner loop. The
* carry fixups are done in order so after these loops the
* first m->used words of W[] have the carries fixed
*/
{
int iy;
mp_digit *tmpn;
int ix, res, olduse;
mp_word W[MP_WARRAY];
if (x->used > (int)MP_WARRAY) {
return MP_VAL;
}
/* get old used count */
olduse = x->used;
/* grow a as required */
if (x->alloc < (n->used + 1)) {
if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
return res;
}
}
/* first we have to get the digits of the input into
* an array of double precision words W[...]
*/
{
mp_word *_W;
mp_digit *tmpx;
/* alias for the digits of the modulus */
tmpn = n->dp;
/* alias for the W[] array */
_W = W;
/* Alias for the columns set by an offset of ix */
_W = W + ix;
/* alias for the digits of x*/
tmpx = x->dp;
/* inner loop */
for (iy = 0; iy < n->used; iy++) {
*_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
/* copy the digits of a into W[0..a->used-1] */
for (ix = 0; ix < x->used; ix++) {
*_W++ = *tmpx++;
}
}
/* now fix carry for next digit, W[ix+1] */
W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
}
/* now we have to propagate the carries and
* shift the words downward [all those least
* significant digits we zeroed].
*/
{
mp_digit *tmpx;
mp_word *_W, *_W1;
/* nox fix rest of carries */
/* alias for current word */
_W1 = W + ix;
/* alias for next word, where the carry goes */
_W = W + ++ix;
for (; ix <= ((n->used * 2) + 1); ix++) {
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
}
/* copy out, A = A/b**n
*
* The result is A/b**n but instead of converting from an
* array of mp_word to mp_digit than calling mp_rshd
* we just copy them in the right order
*/
/* alias for destination word */
tmpx = x->dp;
/* alias for shifted double precision result */
_W = W + n->used;
for (ix = 0; ix < (n->used + 1); ix++) {
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
}
/* zero oldused digits, if the input a was larger than
* m->used+1 we'll have to clear the digits
*/
for (; ix < olduse; ix++) {
*tmpx++ = 0;
}
}
/* set the max used and clamp */
x->used = n->used + 1;
mp_clamp (x);
/* if A >= m then A = A - m */
if (mp_cmp_mag (x, n) != MP_LT) {
return s_mp_sub (x, n, x);
}
return MP_OKAY;
/* zero the high words of W[a->used..m->used*2] */
for (; ix < ((n->used * 2) + 1); ix++) {
*_W++ = 0;