gmx-cluster.1 9.67 KB
Newer Older
1 2
.\" Man page generated from reStructuredText.
.
3
.TH "GMX-CLUSTER" "1" "Nov 22, 2018" "2019-beta3" "GROMACS"
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
.SH NAME
gmx-cluster \- Cluster structures
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.SH SYNOPSIS
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
gmx cluster [\fB\-f\fP \fI[<.xtc/.trr/...>]\fP] [\fB\-s\fP \fI[<.tpr/.gro/...>]\fP] [\fB\-n\fP \fI[<.ndx>]\fP]
            [\fB\-dm\fP \fI[<.xpm>]\fP] [\fB\-om\fP \fI[<.xpm>]\fP] [\fB\-o\fP \fI[<.xpm>]\fP] [\fB\-g\fP \fI[<.log>]\fP]
            [\fB\-dist\fP \fI[<.xvg>]\fP] [\fB\-ev\fP \fI[<.xvg>]\fP] [\fB\-conv\fP \fI[<.xvg>]\fP]
            [\fB\-sz\fP \fI[<.xvg>]\fP] [\fB\-tr\fP \fI[<.xpm>]\fP] [\fB\-ntr\fP \fI[<.xvg>]\fP]
43 44 45 46 47 48 49 50 51
            [\fB\-clid\fP \fI[<.xvg>]\fP] [\fB\-cl\fP \fI[<.xtc/.trr/...>]\fP]
            [\fB\-clndx\fP \fI[<.ndx>]\fP] [\fB\-b\fP \fI<time>\fP] [\fB\-e\fP \fI<time>\fP] [\fB\-dt\fP \fI<time>\fP]
            [\fB\-tu\fP \fI<enum>\fP] [\fB\-[no]w\fP] [\fB\-xvg\fP \fI<enum>\fP] [\fB\-[no]dista\fP]
            [\fB\-nlevels\fP \fI<int>\fP] [\fB\-cutoff\fP \fI<real>\fP] [\fB\-[no]fit\fP]
            [\fB\-max\fP \fI<real>\fP] [\fB\-skip\fP \fI<int>\fP] [\fB\-[no]av\fP] [\fB\-wcl\fP \fI<int>\fP]
            [\fB\-nst\fP \fI<int>\fP] [\fB\-rmsmin\fP \fI<real>\fP] [\fB\-method\fP \fI<enum>\fP]
            [\fB\-minstruct\fP \fI<int>\fP] [\fB\-[no]binary\fP] [\fB\-M\fP \fI<int>\fP] [\fB\-P\fP \fI<int>\fP]
            [\fB\-seed\fP \fI<int>\fP] [\fB\-niter\fP \fI<int>\fP] [\fB\-nrandom\fP \fI<int>\fP]
            [\fB\-kT\fP \fI<real>\fP] [\fB\-[no]pbc\fP]
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
.ft P
.fi
.UNINDENT
.UNINDENT
.SH DESCRIPTION
.sp
\fBgmx cluster\fP can cluster structures using several different methods.
Distances between structures can be determined from a trajectory
or read from an \&.xpm matrix file with the \fB\-dm\fP option.
RMS deviation after fitting or RMS deviation of atom\-pair distances
can be used to define the distance between structures.
.sp
single linkage: add a structure to a cluster when its distance to any
element of the cluster is less than \fBcutoff\fP\&.
.sp
Jarvis Patrick: add a structure to a cluster when this structure
and a structure in the cluster have each other as neighbors and
they have a least \fBP\fP neighbors in common. The neighbors
of a structure are the M closest structures or all structures within
\fBcutoff\fP\&.
.sp
Monte Carlo: reorder the RMSD matrix using Monte Carlo such that
the order of the frames is using the smallest possible increments.
With this it is possible to make a smooth animation going from one
structure to another with the largest possible (e.g.) RMSD between
them, however the intermediate steps should be as small as possible.
Applications could be to visualize a potential of mean force
ensemble of simulations or a pulling simulation. Obviously the user
has to prepare the trajectory well (e.g. by not superimposing frames).
The final result can be inspect visually by looking at the matrix
\&.xpm file, which should vary smoothly from bottom to top.
.sp
diagonalization: diagonalize the RMSD matrix.
.sp
gromos: use algorithm as described in Daura \fIet al.\fP
(\fIAngew. Chem. Int. Ed.\fP \fB1999\fP, \fI38\fP, pp 236\-240).
Count number of neighbors using cut\-off, take structure with
largest number of neighbors with all its neighbors as cluster
and eliminate it from the pool of clusters. Repeat for remaining
structures in pool.
.sp
When the clustering algorithm assigns each structure to exactly one
cluster (single linkage, Jarvis Patrick and gromos) and a trajectory
file is supplied, the structure with
the smallest average distance to the others or the average structure
or all structures for each cluster will be written to a trajectory
file. When writing all structures, separate numbered files are made
for each cluster.
.sp
Two output files are always written:
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
\fB\-o\fP writes the RMSD values in the upper left half of the matrix
and a graphical depiction of the clusters in the lower right half
When \fB\-minstruct\fP = 1 the graphical depiction is black
when two structures are in the same cluster.
When \fB\-minstruct\fP > 1 different colors will be used for each
cluster.
.IP \(bu 2
\fB\-g\fP writes information on the options used and a detailed list
of all clusters and their members.
.UNINDENT
.UNINDENT
.UNINDENT
.sp
Additionally, a number of optional output files can be written:
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.IP \(bu 2
\fB\-dist\fP writes the RMSD distribution.
.IP \(bu 2
\fB\-ev\fP writes the eigenvectors of the RMSD matrix
diagonalization.
.IP \(bu 2
\fB\-sz\fP writes the cluster sizes.
.IP \(bu 2
\fB\-tr\fP writes a matrix of the number transitions between
cluster pairs.
.IP \(bu 2
\fB\-ntr\fP writes the total number of transitions to or from
each cluster.
.IP \(bu 2
\fB\-clid\fP writes the cluster number as a function of time.
.IP \(bu 2
139 140 141
\fB\-clndx\fP writes the frame numbers corresponding to the clusters to the
specified index file to be read into trjconv.
.IP \(bu 2
142 143 144 145 146 147 148 149 150 151 152 153 154 155
\fB\-cl\fP writes average (with option \fB\-av\fP) or central
structure of each cluster or writes numbered files with cluster members
for a selected set of clusters (with option \fB\-wcl\fP, depends on
\fB\-nst\fP and \fB\-rmsmin\fP). The center of a cluster is the
structure with the smallest average RMSD from all other structures
of the cluster.
.UNINDENT
.UNINDENT
.UNINDENT
.SH OPTIONS
.sp
Options to specify input files:
.INDENT 0.0
.TP
156
.B \fB\-f\fP [<.xtc/.trr/…>] (traj.xtc) (Optional)
157 158
Trajectory: xtc trr cpt gro g96 pdb tng
.TP
159
.B \fB\-s\fP [<.tpr/.gro/…>] (topol.tpr)
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
Structure+mass(db): tpr gro g96 pdb brk ent
.TP
.B \fB\-n\fP [<.ndx>] (index.ndx) (Optional)
Index file
.TP
.B \fB\-dm\fP [<.xpm>] (rmsd.xpm) (Optional)
X PixMap compatible matrix file
.UNINDENT
.sp
Options to specify output files:
.INDENT 0.0
.TP
.B \fB\-om\fP [<.xpm>] (rmsd\-raw.xpm)
X PixMap compatible matrix file
.TP
.B \fB\-o\fP [<.xpm>] (rmsd\-clust.xpm)
X PixMap compatible matrix file
.TP
.B \fB\-g\fP [<.log>] (cluster.log)
Log file
.TP
.B \fB\-dist\fP [<.xvg>] (rmsd\-dist.xvg) (Optional)
xvgr/xmgr file
.TP
.B \fB\-ev\fP [<.xvg>] (rmsd\-eig.xvg) (Optional)
xvgr/xmgr file
.TP
.B \fB\-conv\fP [<.xvg>] (mc\-conv.xvg) (Optional)
xvgr/xmgr file
.TP
.B \fB\-sz\fP [<.xvg>] (clust\-size.xvg) (Optional)
xvgr/xmgr file
.TP
.B \fB\-tr\fP [<.xpm>] (clust\-trans.xpm) (Optional)
X PixMap compatible matrix file
.TP
.B \fB\-ntr\fP [<.xvg>] (clust\-trans.xvg) (Optional)
xvgr/xmgr file
.TP
.B \fB\-clid\fP [<.xvg>] (clust\-id.xvg) (Optional)
xvgr/xmgr file
.TP
202
.B \fB\-cl\fP [<.xtc/.trr/…>] (clusters.pdb) (Optional)
203
Trajectory: xtc trr cpt gro g96 pdb tng
204 205 206
.TP
.B \fB\-clndx\fP [<.ndx>] (clusters.ndx) (Optional)
Index file
207 208 209 210 211 212
.UNINDENT
.sp
Other options:
.INDENT 0.0
.TP
.B \fB\-b\fP <time> (0)
213
Time of first frame to read from trajectory (default unit ps)
214 215
.TP
.B \fB\-e\fP <time> (0)
216
Time of last frame to read from trajectory (default unit ps)
217 218
.TP
.B \fB\-dt\fP <time> (0)
219
Only use frame when t MOD dt = first time (default unit ps)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
.TP
.B \fB\-tu\fP <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s
.TP
.B \fB\-[no]w\fP  (no)
View output \&.xvg, \&.xpm, \&.eps and \&.pdb files
.TP
.B \fB\-xvg\fP <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none
.TP
.B \fB\-[no]dista\fP  (no)
Use RMSD of distances instead of RMS deviation
.TP
.B \fB\-nlevels\fP <int> (40)
Discretize RMSD matrix in this number of levels
.TP
.B \fB\-cutoff\fP <real> (0.1)
RMSD cut\-off (nm) for two structures to be neighbor
.TP
.B \fB\-[no]fit\fP  (yes)
Use least squares fitting before RMSD calculation
.TP
.B \fB\-max\fP <real> (\-1)
Maximum level in RMSD matrix
.TP
.B \fB\-skip\fP <int> (1)
Only analyze every nr\-th frame
.TP
.B \fB\-[no]av\fP  (no)
249
Write average instead of middle structure for each cluster
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
.TP
.B \fB\-wcl\fP <int> (0)
Write the structures for this number of clusters to numbered files
.TP
.B \fB\-nst\fP <int> (1)
Only write all structures if more than this number of structures per cluster
.TP
.B \fB\-rmsmin\fP <real> (0)
minimum rms difference with rest of cluster for writing structures
.TP
.B \fB\-method\fP <enum> (linkage)
Method for cluster determination: linkage, jarvis\-patrick, monte\-carlo, diagonalization, gromos
.TP
.B \fB\-minstruct\fP <int> (1)
Minimum number of structures in cluster for coloring in the \&.xpm file
.TP
.B \fB\-[no]binary\fP  (no)
Treat the RMSD matrix as consisting of 0 and 1, where the cut\-off is given by \fB\-cutoff\fP
.TP
.B \fB\-M\fP <int> (10)
Number of nearest neighbors considered for Jarvis\-Patrick algorithm, 0 is use cutoff
.TP
.B \fB\-P\fP <int> (3)
Number of identical nearest neighbors required to form a cluster
.TP
.B \fB\-seed\fP <int> (0)
Random number seed for Monte Carlo clustering algorithm (0 means generate)
.TP
.B \fB\-niter\fP <int> (10000)
Number of iterations for MC
.TP
.B \fB\-nrandom\fP <int> (0)
The first iterations for MC may be done complete random, to shuffle the frames
.TP
.B \fB\-kT\fP <real> (0.001)
Boltzmann weighting factor for Monte Carlo optimization (zero turns off uphill steps)
.TP
.B \fB\-[no]pbc\fP  (yes)
PBC check
.UNINDENT
.SH SEE ALSO
.sp
\fBgmx(1)\fP
.sp
More information about GROMACS is available at <\fI\%http://www.gromacs.org/\fP>.
.SH COPYRIGHT
296
2018, GROMACS development team
297 298
.\" Generated by docutils manpage writer.
.