gmx-energy.1 8.64 KB
Newer Older
1 2
.\" Man page generated from reStructuredText.
.
3
.TH "GMX-ENERGY" "1" "Aug 23, 2018" "2018.3" "GROMACS"
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
.SH NAME
gmx-energy \- Writes energies to xvg files and display averages
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.SH SYNOPSIS
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
gmx energy [\fB\-f\fP \fI[<.edr>]\fP] [\fB\-f2\fP \fI[<.edr>]\fP] [\fB\-s\fP \fI[<.tpr>]\fP] [\fB\-o\fP \fI[<.xvg>]\fP]
40 41 42 43 44 45 46 47 48 49
           [\fB\-viol\fP \fI[<.xvg>]\fP] [\fB\-pairs\fP \fI[<.xvg>]\fP] [\fB\-corr\fP \fI[<.xvg>]\fP]
           [\fB\-vis\fP \fI[<.xvg>]\fP] [\fB\-evisco\fP \fI[<.xvg>]\fP] [\fB\-eviscoi\fP \fI[<.xvg>]\fP]
           [\fB\-ravg\fP \fI[<.xvg>]\fP] [\fB\-odh\fP \fI[<.xvg>]\fP] [\fB\-b\fP \fI<time>\fP] [\fB\-e\fP \fI<time>\fP]
           [\fB\-[no]w\fP] [\fB\-xvg\fP \fI<enum>\fP] [\fB\-[no]fee\fP] [\fB\-fetemp\fP \fI<real>\fP]
           [\fB\-zero\fP \fI<real>\fP] [\fB\-[no]sum\fP] [\fB\-[no]dp\fP] [\fB\-nbmin\fP \fI<int>\fP]
           [\fB\-nbmax\fP \fI<int>\fP] [\fB\-[no]mutot\fP] [\fB\-skip\fP \fI<int>\fP] [\fB\-[no]aver\fP]
           [\fB\-nmol\fP \fI<int>\fP] [\fB\-[no]fluct_props\fP] [\fB\-[no]driftcorr\fP]
           [\fB\-[no]fluc\fP] [\fB\-[no]orinst\fP] [\fB\-[no]ovec\fP] [\fB\-acflen\fP \fI<int>\fP]
           [\fB\-[no]normalize\fP] [\fB\-P\fP \fI<enum>\fP] [\fB\-fitfn\fP \fI<enum>\fP]
           [\fB\-beginfit\fP \fI<real>\fP] [\fB\-endfit\fP \fI<real>\fP]
50 51 52 53 54 55
.ft P
.fi
.UNINDENT
.UNINDENT
.SH DESCRIPTION
.sp
56 57
\fBgmx energy\fP extracts energy components
from an energy file. The user is prompted to interactively
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
select the desired energy terms.
.sp
Average, RMSD, and drift are calculated with full precision from the
simulation (see printed manual). Drift is calculated by performing
a least\-squares fit of the data to a straight line. The reported total drift
is the difference of the fit at the first and last point.
An error estimate of the average is given based on a block averages
over 5 blocks using the full\-precision averages. The error estimate
can be performed over multiple block lengths with the options
\fB\-nbmin\fP and \fB\-nbmax\fP\&.
\fBNote\fP that in most cases the energy files contains averages over all
MD steps, or over many more points than the number of frames in
energy file. This makes the \fBgmx energy\fP statistics output more accurate
than the \&.xvg output. When exact averages are not present in the energy
file, the statistics mentioned above are simply over the single, per\-frame
energy values.
.sp
The term fluctuation gives the RMSD around the least\-squares fit.
.sp
Some fluctuation\-dependent properties can be calculated provided
the correct energy terms are selected, and that the command line option
\fB\-fluct_props\fP is given. The following properties
will be computed:
.TS
center;
|l|l|.
_
T{
Property
T}	T{
Energy terms needed
T}
_
T{
Heat capacity C_p (NPT sims):
T}	T{
Enthalpy, Temp
T}
_
T{
Heat capacity C_v (NVT sims):
T}	T{
Etot, Temp
T}
_
T{
Thermal expansion coeff. (NPT):
T}	T{
Enthalpy, Vol, Temp
T}
_
T{
Isothermal compressibility:
T}	T{
Vol, Temp
T}
_
T{
Adiabatic bulk modulus:
T}	T{
Vol, Temp
T}
_
.TE
.sp
You always need to set the number of molecules \fB\-nmol\fP\&.
The C_p/C_v computations do \fBnot\fP include any corrections
for quantum effects. Use the gmx dos program if you need that (and you do).
.sp
Option \fB\-odh\fP extracts and plots the free energy data
(Hamiltoian differences and/or the Hamiltonian derivative dhdl)
from the \fBener.edr\fP file.
.sp
With \fB\-fee\fP an estimate is calculated for the free\-energy
difference with an ideal gas state:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
Delta A = A(N,V,T) \- A_idealgas(N,V,T) = kT ln(<exp(U_pot/kT)>)
Delta G = G(N,p,T) \- G_idealgas(N,p,T) = kT ln(<exp(U_pot/kT)>)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
145
where k is Boltzmann’s constant, T is set by \fB\-fetemp\fP and
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
the average is over the ensemble (or time in a trajectory).
Note that this is in principle
only correct when averaging over the whole (Boltzmann) ensemble
and using the potential energy. This also allows for an entropy
estimate using:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
Delta S(N,V,T) = S(N,V,T) \- S_idealgas(N,V,T) = (<U_pot> \- Delta A)/T
Delta S(N,p,T) = S(N,p,T) \- S_idealgas(N,p,T) = (<U_pot> + pV \- Delta G)/T
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
When a second energy file is specified (\fB\-f2\fP), a free energy
difference is calculated:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
dF = \-kT ln(<exp(\-(E_B\-E_A)/kT)>_A) ,
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
where E_A and E_B are the energies from the first and second energy
files, and the average is over the ensemble A. The running average
of the free energy difference is printed to a file specified by \fB\-ravg\fP\&.
\fBNote\fP that the energies must both be calculated from the same trajectory.
.SH OPTIONS
.sp
Options to specify input files:
.INDENT 0.0
.TP
.B \fB\-f\fP [<.edr>] (ener.edr)
Energy file
.TP
.B \fB\-f2\fP [<.edr>] (ener.edr) (Optional)
Energy file
.TP
.B \fB\-s\fP [<.tpr>] (topol.tpr) (Optional)
Portable xdr run input file
.UNINDENT
.sp
Options to specify output files:
.INDENT 0.0
.TP
.B \fB\-o\fP [<.xvg>] (energy.xvg)
xvgr/xmgr file
.TP
.B \fB\-viol\fP [<.xvg>] (violaver.xvg) (Optional)
xvgr/xmgr file
.TP
.B \fB\-pairs\fP [<.xvg>] (pairs.xvg) (Optional)
xvgr/xmgr file
.TP
207
.B \fB\-corr\fP [<.xvg>] (enecorr.xvg) (Optional)
208 209
xvgr/xmgr file
.TP
210
.B \fB\-vis\fP [<.xvg>] (visco.xvg) (Optional)
211 212
xvgr/xmgr file
.TP
213
.B \fB\-evisco\fP [<.xvg>] (evisco.xvg) (Optional)
214 215
xvgr/xmgr file
.TP
216
.B \fB\-eviscoi\fP [<.xvg>] (eviscoi.xvg) (Optional)
217 218 219 220 221 222 223 224 225 226 227 228 229
xvgr/xmgr file
.TP
.B \fB\-ravg\fP [<.xvg>] (runavgdf.xvg) (Optional)
xvgr/xmgr file
.TP
.B \fB\-odh\fP [<.xvg>] (dhdl.xvg) (Optional)
xvgr/xmgr file
.UNINDENT
.sp
Other options:
.INDENT 0.0
.TP
.B \fB\-b\fP <time> (0)
230
Time of first frame to read from trajectory (default unit ps)
231 232
.TP
.B \fB\-e\fP <time> (0)
233
Time of last frame to read from trajectory (default unit ps)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
.TP
.B \fB\-[no]w\fP  (no)
View output \&.xvg, \&.xpm, \&.eps and \&.pdb files
.TP
.B \fB\-xvg\fP <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none
.TP
.B \fB\-[no]fee\fP  (no)
Do a free energy estimate
.TP
.B \fB\-fetemp\fP <real> (300)
Reference temperature for free energy calculation
.TP
.B \fB\-zero\fP <real> (0)
Subtract a zero\-point energy
.TP
.B \fB\-[no]sum\fP  (no)
Sum the energy terms selected rather than display them all
.TP
.B \fB\-[no]dp\fP  (no)
Print energies in high precision
.TP
.B \fB\-nbmin\fP <int> (5)
Minimum number of blocks for error estimate
.TP
.B \fB\-nbmax\fP <int> (5)
Maximum number of blocks for error estimate
.TP
.B \fB\-[no]mutot\fP  (no)
Compute the total dipole moment from the components
.TP
.B \fB\-skip\fP <int> (0)
Skip number of frames between data points
.TP
.B \fB\-[no]aver\fP  (no)
Also print the exact average and rmsd stored in the energy frames (only when 1 term is requested)
.TP
.B \fB\-nmol\fP <int> (1)
Number of molecules in your sample: the energies are divided by this number
.TP
.B \fB\-[no]fluct_props\fP  (no)
Compute properties based on energy fluctuations, like heat capacity
.TP
.B \fB\-[no]driftcorr\fP  (no)
Useful only for calculations of fluctuation properties. The drift in the observables will be subtracted before computing the fluctuation properties.
.TP
.B \fB\-[no]fluc\fP  (no)
Calculate autocorrelation of energy fluctuations rather than energy itself
.TP
.B \fB\-[no]orinst\fP  (no)
Analyse instantaneous orientation data
.TP
.B \fB\-[no]ovec\fP  (no)
Also plot the eigenvectors with \fB\-oten\fP
.TP
.B \fB\-acflen\fP <int> (\-1)
Length of the ACF, default is half the number of frames
.TP
.B \fB\-[no]normalize\fP  (yes)
Normalize ACF
.TP
.B \fB\-P\fP <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3
.TP
.B \fB\-fitfn\fP <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9
.TP
.B \fB\-beginfit\fP <real> (0)
Time where to begin the exponential fit of the correlation function
.TP
.B \fB\-endfit\fP <real> (\-1)
Time where to end the exponential fit of the correlation function, \-1 is until the end
.UNINDENT
.SH SEE ALSO
.sp
\fBgmx(1)\fP
.sp
More information about GROMACS is available at <\fI\%http://www.gromacs.org/\fP>.
.SH COPYRIGHT
313
2018, GROMACS development team
314 315
.\" Generated by docutils manpage writer.
.