OPC_TriBoxOverlap.h 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

//! This macro quickly finds the min & max values among 3 variables
#define FINDMINMAX(x0, x1, x2, min, max)	\
	min = max = x0;							\
	if(x1<min) min=x1;						\
	if(x1>max) max=x1;						\
	if(x2<min) min=x2;						\
	if(x2>max) max=x2;

//! TO BE DOCUMENTED
inline_ BOOL planeBoxOverlap(const Point& normal, const float d, const Point& maxbox)
{
	Point vmin, vmax;
	for(udword q=0;q<=2;q++)
	{
		if(normal[q]>0.0f)	{ vmin[q]=-maxbox[q]; vmax[q]=maxbox[q]; }
		else				{ vmin[q]=maxbox[q]; vmax[q]=-maxbox[q]; }
	}
	if((normal|vmin)+d>0.0f) return FALSE;
	if((normal|vmax)+d>=0.0f) return TRUE;

	return FALSE;
}

//! TO BE DOCUMENTED
#define AXISTEST_X01(a, b, fa, fb)							\
	min = a*v0.y - b*v0.z;									\
	max = a*v2.y - b*v2.z;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.y + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_X2(a, b, fa, fb)							\
	min = a*v0.y - b*v0.z;									\
	max = a*v1.y - b*v1.z;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.y + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Y02(a, b, fa, fb)							\
	min = b*v0.z - a*v0.x;									\
	max = b*v2.z - a*v2.x;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Y1(a, b, fa, fb)							\
	min = b*v0.z - a*v0.x;									\
	max = b*v1.z - a*v1.x;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.z;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Z12(a, b, fa, fb)							\
	min = a*v1.x - b*v1.y;									\
	max = a*v2.x - b*v2.y;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.y;					\
	if(min>rad || max<-rad) return FALSE;

//! TO BE DOCUMENTED
#define AXISTEST_Z0(a, b, fa, fb)							\
	min = a*v0.x - b*v0.y;									\
	max = a*v1.x - b*v1.y;									\
	if(min>max) {const float tmp=max; max=min; min=tmp;	}	\
	rad = fa * extents.x + fb * extents.y;					\
	if(min>rad || max<-rad) return FALSE;

// compute triangle edges
// - edges lazy evaluated to take advantage of early exits
// - fabs precomputed (half less work, possible since extents are always >0)
// - customized macros to take advantage of the null component
// - axis vector discarded, possibly saves useless movs
#define IMPLEMENT_CLASS3_TESTS						\
	float rad;										\
	float min, max;									\
													\
	const float fey0 = fabsf(e0.y);					\
	const float fez0 = fabsf(e0.z);					\
	AXISTEST_X01(e0.z, e0.y, fez0, fey0);			\
	const float fex0 = fabsf(e0.x);					\
	AXISTEST_Y02(e0.z, e0.x, fez0, fex0);			\
	AXISTEST_Z12(e0.y, e0.x, fey0, fex0);			\
													\
	const float fey1 = fabsf(e1.y);					\
	const float fez1 = fabsf(e1.z);					\
	AXISTEST_X01(e1.z, e1.y, fez1, fey1);			\
	const float fex1 = fabsf(e1.x);					\
	AXISTEST_Y02(e1.z, e1.x, fez1, fex1);			\
	AXISTEST_Z0(e1.y, e1.x, fey1, fex1);			\
													\
	const Point e2 = mLeafVerts[0] - mLeafVerts[2];	\
	const float fey2 = fabsf(e2.y);					\
	const float fez2 = fabsf(e2.z);					\
	AXISTEST_X2(e2.z, e2.y, fez2, fey2);			\
	const float fex2 = fabsf(e2.x);					\
	AXISTEST_Y1(e2.z, e2.x, fez2, fex2);			\
	AXISTEST_Z12(e2.y, e2.x, fey2, fex2);

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Triangle-Box overlap test using the separating axis theorem.
 *	This is the code from Tomas Mller, a bit optimized:
 *	- with some more lazy evaluation (faster path on PC)
 *	- with a tiny bit of assembly
 *	- with "SAT-lite" applied if needed
 *	- and perhaps with some more minor modifs...
 *
 *	\param		center		[in] box center
 *	\param		extents		[in] box extents
 *	\return		true if triangle & box overlap
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline_ BOOL AABBTreeCollider::TriBoxOverlap(const Point& center, const Point& extents)
{
	// Stats
	mNbBVPrimTests++;

	// use separating axis theorem to test overlap between triangle and box 
	// need to test for overlap in these directions: 
	// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle 
	//    we do not even need to test these) 
	// 2) normal of the triangle 
	// 3) crossproduct(edge from tri, {x,y,z}-directin) 
	//    this gives 3x3=9 more tests 

	// move everything so that the boxcenter is in (0,0,0) 
	Point v0, v1, v2;
	v0.x = mLeafVerts[0].x - center.x;
	v1.x = mLeafVerts[1].x - center.x;
	v2.x = mLeafVerts[2].x - center.x;

	// First, test overlap in the {x,y,z}-directions
#ifdef OPC_USE_FCOMI
	// find min, max of the triangle in x-direction, and test for overlap in X
	if(FCMin3(v0.x, v1.x, v2.x)>extents.x)	return FALSE;
	if(FCMax3(v0.x, v1.x, v2.x)<-extents.x)	return FALSE;

	// same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	if(FCMin3(v0.y, v1.y, v2.y)>extents.y)	return FALSE;
	if(FCMax3(v0.y, v1.y, v2.y)<-extents.y)	return FALSE;

	// same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	if(FCMin3(v0.z, v1.z, v2.z)>extents.z)	return FALSE;
	if(FCMax3(v0.z, v1.z, v2.z)<-extents.z)	return FALSE;
#else
	float min,max;
	// Find min, max of the triangle in x-direction, and test for overlap in X
	FINDMINMAX(v0.x, v1.x, v2.x, min, max);
	if(min>extents.x || max<-extents.x) return FALSE;

	// Same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	FINDMINMAX(v0.y, v1.y, v2.y, min, max);
	if(min>extents.y || max<-extents.y) return FALSE;

	// Same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	FINDMINMAX(v0.z, v1.z, v2.z, min, max);
	if(min>extents.z || max<-extents.z) return FALSE;
#endif
	// 2) Test if the box intersects the plane of the triangle
	// compute plane equation of triangle: normal*x+d=0
	// ### could be precomputed since we use the same leaf triangle several times
	const Point e0 = v1 - v0;
	const Point e1 = v2 - v1;
	const Point normal = e0 ^ e1;
	const float d = -normal|v0;
	if(!planeBoxOverlap(normal, d, extents)) return FALSE;

	// 3) "Class III" tests
	if(mFullPrimBoxTest)
	{
		IMPLEMENT_CLASS3_TESTS
	}
	return TRUE;
}

//! A dedicated version where the box is constant
inline_ BOOL OBBCollider::TriBoxOverlap()
{
	// Stats
	mNbVolumePrimTests++;

	// Hook
	const Point& extents = mBoxExtents;
	const Point& v0 = mLeafVerts[0];
	const Point& v1 = mLeafVerts[1];
	const Point& v2 = mLeafVerts[2];

	// use separating axis theorem to test overlap between triangle and box 
	// need to test for overlap in these directions: 
	// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle 
	//    we do not even need to test these) 
	// 2) normal of the triangle 
	// 3) crossproduct(edge from tri, {x,y,z}-directin) 
	//    this gives 3x3=9 more tests 

	// Box center is already in (0,0,0)

	// First, test overlap in the {x,y,z}-directions
#ifdef OPC_USE_FCOMI
	// find min, max of the triangle in x-direction, and test for overlap in X
	if(FCMin3(v0.x, v1.x, v2.x)>mBoxExtents.x)	return FALSE;
	if(FCMax3(v0.x, v1.x, v2.x)<-mBoxExtents.x)	return FALSE;

	if(FCMin3(v0.y, v1.y, v2.y)>mBoxExtents.y)	return FALSE;
	if(FCMax3(v0.y, v1.y, v2.y)<-mBoxExtents.y)	return FALSE;

	if(FCMin3(v0.z, v1.z, v2.z)>mBoxExtents.z)	return FALSE;
	if(FCMax3(v0.z, v1.z, v2.z)<-mBoxExtents.z)	return FALSE;
#else
	float min,max;
	// Find min, max of the triangle in x-direction, and test for overlap in X
	FINDMINMAX(v0.x, v1.x, v2.x, min, max);
	if(min>mBoxExtents.x || max<-mBoxExtents.x) return FALSE;

	FINDMINMAX(v0.y, v1.y, v2.y, min, max);
	if(min>mBoxExtents.y || max<-mBoxExtents.y) return FALSE;

	FINDMINMAX(v0.z, v1.z, v2.z, min, max);
	if(min>mBoxExtents.z || max<-mBoxExtents.z) return FALSE;
#endif
	// 2) Test if the box intersects the plane of the triangle
	// compute plane equation of triangle: normal*x+d=0
	// ### could be precomputed since we use the same leaf triangle several times
	const Point e0 = v1 - v0;
	const Point e1 = v2 - v1;
	const Point normal = e0 ^ e1;
	const float d = -normal|v0;
	if(!planeBoxOverlap(normal, d, mBoxExtents)) return FALSE;

	// 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV)
	{
		IMPLEMENT_CLASS3_TESTS
	}
	return TRUE;
}

//! ...and another one, jeez
inline_ BOOL AABBCollider::TriBoxOverlap()
{
	// Stats
	mNbVolumePrimTests++;

	// Hook
	const Point& center		= mBox.mCenter;
	const Point& extents	= mBox.mExtents;

	// use separating axis theorem to test overlap between triangle and box 
	// need to test for overlap in these directions: 
	// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle 
	//    we do not even need to test these) 
	// 2) normal of the triangle 
	// 3) crossproduct(edge from tri, {x,y,z}-directin) 
	//    this gives 3x3=9 more tests 

	// move everything so that the boxcenter is in (0,0,0) 
	Point v0, v1, v2;
	v0.x = mLeafVerts[0].x - center.x;
	v1.x = mLeafVerts[1].x - center.x;
	v2.x = mLeafVerts[2].x - center.x;

	// First, test overlap in the {x,y,z}-directions
#ifdef OPC_USE_FCOMI
	// find min, max of the triangle in x-direction, and test for overlap in X
	if(FCMin3(v0.x, v1.x, v2.x)>extents.x)	return FALSE;
	if(FCMax3(v0.x, v1.x, v2.x)<-extents.x)	return FALSE;

	// same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	if(FCMin3(v0.y, v1.y, v2.y)>extents.y)	return FALSE;
	if(FCMax3(v0.y, v1.y, v2.y)<-extents.y)	return FALSE;

	// same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	if(FCMin3(v0.z, v1.z, v2.z)>extents.z)	return FALSE;
	if(FCMax3(v0.z, v1.z, v2.z)<-extents.z)	return FALSE;
#else
	float min,max;
	// Find min, max of the triangle in x-direction, and test for overlap in X
	FINDMINMAX(v0.x, v1.x, v2.x, min, max);
	if(min>extents.x || max<-extents.x) return FALSE;

	// Same for Y
	v0.y = mLeafVerts[0].y - center.y;
	v1.y = mLeafVerts[1].y - center.y;
	v2.y = mLeafVerts[2].y - center.y;

	FINDMINMAX(v0.y, v1.y, v2.y, min, max);
	if(min>extents.y || max<-extents.y) return FALSE;

	// Same for Z
	v0.z = mLeafVerts[0].z - center.z;
	v1.z = mLeafVerts[1].z - center.z;
	v2.z = mLeafVerts[2].z - center.z;

	FINDMINMAX(v0.z, v1.z, v2.z, min, max);
	if(min>extents.z || max<-extents.z) return FALSE;
#endif
	// 2) Test if the box intersects the plane of the triangle
	// compute plane equation of triangle: normal*x+d=0
	// ### could be precomputed since we use the same leaf triangle several times
	const Point e0 = v1 - v0;
	const Point e1 = v2 - v1;
	const Point normal = e0 ^ e1;
	const float d = -normal|v0;
	if(!planeBoxOverlap(normal, d, extents)) return FALSE;

	// 3) "Class III" tests - here we always do full tests since the box is a primitive (not a BV)
	{
		IMPLEMENT_CLASS3_TESTS
	}
	return TRUE;
}