Skip to content
Snippets Groups Projects
Select Git revision
  • master
  • pristine-tar
  • upstream
  • buster-backports
  • debian/3.0.3+_3.0.5-1
  • upstream/3.0.3+_3.0.5
  • debian/3.0.3+_3.0.4-1
  • upstream/3.0.3+_3.0.4
  • debian/3.0.2+_3.0.1-1
  • upstream/3.0.2+_3.0.1
  • debian/3.0.2+_3.0.0-1_bpo10+1
  • debian/3.0.2+_3.0.0-1
  • upstream/3.0.2+_3.0.0
  • upstream/3.0.2+repack
  • debian/3.0.2-2_bpo10+1
  • debian/3.0.2-2
  • debian/3.0.2-1
  • upstream/3.0.2
  • upstream/2.3.1
  • debian/2.0.2-2
  • debian/2.0.2-1
  • upstream/2.0.2
22 results

index.js

Blame
  • CodeBlock.h 51.12 KiB
    /*
     * Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013 Apple Inc. All rights reserved.
     * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     *
     * 1.  Redistributions of source code must retain the above copyright
     *     notice, this list of conditions and the following disclaimer.
     * 2.  Redistributions in binary form must reproduce the above copyright
     *     notice, this list of conditions and the following disclaimer in the
     *     documentation and/or other materials provided with the distribution.
     * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
     *     its contributors may be used to endorse or promote products derived
     *     from this software without specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
     * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
     * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     */
    
    #ifndef CodeBlock_h
    #define CodeBlock_h
    
    #include "ArrayProfile.h"
    #include "ByValInfo.h"
    #include "BytecodeConventions.h"
    #include "CallLinkInfo.h"
    #include "CallReturnOffsetToBytecodeOffset.h"
    #include "CodeBlockHash.h"
    #include "ConcurrentJITLock.h"
    #include "CodeOrigin.h"
    #include "CodeType.h"
    #include "CompactJITCodeMap.h"
    #include "DFGCodeBlocks.h"
    #include "DFGCommon.h"
    #include "DFGCommonData.h"
    #include "DFGExitProfile.h"
    #include "DFGMinifiedGraph.h"
    #include "DFGOSREntry.h"
    #include "DFGOSRExit.h"
    #include "DFGVariableEventStream.h"
    #include "DeferredCompilationCallback.h"
    #include "EvalCodeCache.h"
    #include "ExecutionCounter.h"
    #include "ExpressionRangeInfo.h"
    #include "HandlerInfo.h"
    #include "ObjectAllocationProfile.h"
    #include "Options.h"
    #include "Operations.h"
    #include "PutPropertySlot.h"
    #include "Instruction.h"
    #include "JITCode.h"
    #include "JITWriteBarrier.h"
    #include "JSGlobalObject.h"
    #include "JumpReplacementWatchpoint.h"
    #include "JumpTable.h"
    #include "LLIntCallLinkInfo.h"
    #include "LazyOperandValueProfile.h"
    #include "LineInfo.h"
    #include "ProfilerCompilation.h"
    #include "RegExpObject.h"
    #include "StructureStubInfo.h"
    #include "UnconditionalFinalizer.h"
    #include "ValueProfile.h"
    #include "Watchpoint.h"
    #include <wtf/RefCountedArray.h>
    #include <wtf/FastAllocBase.h>
    #include <wtf/PassOwnPtr.h>
    #include <wtf/Platform.h>
    #include <wtf/RefPtr.h>
    #include <wtf/SegmentedVector.h>
    #include <wtf/Vector.h>
    #include <wtf/text/WTFString.h>
    
    namespace JSC {
    
    class DFGCodeBlocks;
    class ExecState;
    class LLIntOffsetsExtractor;
    class RepatchBuffer;
    
    inline int unmodifiedArgumentsRegister(int argumentsRegister) { return argumentsRegister - 1; }
    
    static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }
    
    class CodeBlock : public ThreadSafeRefCounted<CodeBlock>, public UnconditionalFinalizer, public WeakReferenceHarvester {
        WTF_MAKE_FAST_ALLOCATED;
        friend class JIT;
        friend class LLIntOffsetsExtractor;
    public:
        enum CopyParsedBlockTag { CopyParsedBlock };
    protected:
        CodeBlock(CopyParsedBlockTag, CodeBlock& other);
            
        CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*, PassRefPtr<SourceProvider>, unsigned sourceOffset, unsigned firstLineColumnOffset);
    
        WriteBarrier<JSGlobalObject> m_globalObject;
        Heap* m_heap;
    
    public:
        JS_EXPORT_PRIVATE virtual ~CodeBlock();
    
        UnlinkedCodeBlock* unlinkedCodeBlock() const { return m_unlinkedCode.get(); }
    
        CString inferredName() const;
        CodeBlockHash hash() const;
        bool hasHash() const;
        bool isSafeToComputeHash() const;
        CString sourceCodeForTools() const; // Not quite the actual source we parsed; this will do things like prefix the source for a function with a reified signature.
        CString sourceCodeOnOneLine() const; // As sourceCodeForTools(), but replaces all whitespace runs with a single space.
        void dumpAssumingJITType(PrintStream&, JITCode::JITType) const;
        void dump(PrintStream&) const;
    
        int numParameters() const { return m_numParameters; }
        void setNumParameters(int newValue);
    
        int* addressOfNumParameters() { return &m_numParameters; }
        static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); }
    
        CodeBlock* alternative() { return m_alternative.get(); }
        PassRefPtr<CodeBlock> releaseAlternative() { return m_alternative.release(); }
        void setAlternative(PassRefPtr<CodeBlock> alternative) { m_alternative = alternative; }
        
        CodeSpecializationKind specializationKind() const
        {
            return specializationFromIsConstruct(m_isConstructor);
        }
        
        CodeBlock* baselineVersion();
    
        void visitAggregate(SlotVisitor&);
    
        static void dumpStatistics();
    
        void dumpBytecode(PrintStream& = WTF::dataFile());
        void dumpBytecode(PrintStream&, unsigned bytecodeOffset);
        void printStructures(PrintStream&, const Instruction*);
        void printStructure(PrintStream&, const char* name, const Instruction*, int operand);
    
        bool isStrictMode() const { return m_isStrictMode; }
    
        inline bool isKnownNotImmediate(int index)
        {
            if (index == m_thisRegister && !m_isStrictMode)
                return true;
    
            if (isConstantRegisterIndex(index))
                return getConstant(index).isCell();
    
            return false;
        }
    
        ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
        {
            return index >= m_numVars;
        }
    
        HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset);
        unsigned lineNumberForBytecodeOffset(unsigned bytecodeOffset);
        unsigned columnNumberForBytecodeOffset(unsigned bytecodeOffset);
        void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot,
                                              int& startOffset, int& endOffset, unsigned& line, unsigned& column);
    
    #if ENABLE(JIT)
    
        StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress)
        {
            return *(binarySearch<StructureStubInfo, void*>(m_structureStubInfos, m_structureStubInfos.size(), returnAddress.value(), getStructureStubInfoReturnLocation));
        }
    
        StructureStubInfo& getStubInfo(unsigned bytecodeIndex)
        {
            return *(binarySearch<StructureStubInfo, unsigned>(m_structureStubInfos, m_structureStubInfos.size(), bytecodeIndex, getStructureStubInfoBytecodeIndex));
        }
    
        void resetStub(StructureStubInfo&);
    
        ByValInfo& getByValInfo(unsigned bytecodeIndex)
        {
            return *(binarySearch<ByValInfo, unsigned>(m_byValInfos, m_byValInfos.size(), bytecodeIndex, getByValInfoBytecodeIndex));
        }
    
        CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress)
        {
            return *(binarySearch<CallLinkInfo, void*>(m_callLinkInfos, m_callLinkInfos.size(), returnAddress.value(), getCallLinkInfoReturnLocation));
        }
    
        CallLinkInfo& getCallLinkInfo(unsigned bytecodeIndex)
        {
            ASSERT(JITCode::isBaselineCode(jitType()));
            return *(binarySearch<CallLinkInfo, unsigned>(m_callLinkInfos, m_callLinkInfos.size(), bytecodeIndex, getCallLinkInfoBytecodeIndex));
        }
    #endif // ENABLE(JIT)
    
        unsigned bytecodeOffset(ExecState*, ReturnAddressPtr);
    
        void unlinkIncomingCalls();
    
    #if ENABLE(JIT)
        unsigned bytecodeOffsetForCallAtIndex(unsigned index)
        {
            if (!m_rareData)
                return 1;
            Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow>& callIndices = m_rareData->m_callReturnIndexVector;
            if (!callIndices.size())
                return 1;
            // FIXME: Fix places in DFG that call out to C that don't set the CodeOrigin. https://bugs.webkit.org/show_bug.cgi?id=118315
            ASSERT(index < m_rareData->m_callReturnIndexVector.size());
            if (index >= m_rareData->m_callReturnIndexVector.size())
                return 1;
            return m_rareData->m_callReturnIndexVector[index].bytecodeOffset;
        }
    
        void unlinkCalls();
            
        void linkIncomingCall(ExecState* callerFrame, CallLinkInfo*);
            
        bool isIncomingCallAlreadyLinked(CallLinkInfo* incoming)
        {
            return m_incomingCalls.isOnList(incoming);
        }
    #endif // ENABLE(JIT)
    
    #if ENABLE(LLINT)
        void linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo*);
    #endif // ENABLE(LLINT)
    
    #if ENABLE(DFG_JIT) || ENABLE(LLINT)
        void setJITCodeMap(PassOwnPtr<CompactJITCodeMap> jitCodeMap)
        {
            m_jitCodeMap = jitCodeMap;
        }
        CompactJITCodeMap* jitCodeMap()
        {
            return m_jitCodeMap.get();
        }
    #endif
        
        unsigned bytecodeOffset(Instruction* returnAddress)
        {
            RELEASE_ASSERT(returnAddress >= instructions().begin() && returnAddress < instructions().end());
            return static_cast<Instruction*>(returnAddress) - instructions().begin();
        }
    
        bool isNumericCompareFunction() { return m_unlinkedCode->isNumericCompareFunction(); }
    
        unsigned numberOfInstructions() const { return m_instructions.size(); }
        RefCountedArray<Instruction>& instructions() { return m_instructions; }
        const RefCountedArray<Instruction>& instructions() const { return m_instructions; }
    
        size_t predictedMachineCodeSize();
    
        bool usesOpcode(OpcodeID);
    
        unsigned instructionCount() { return m_instructions.size(); }
    
        int argumentIndexAfterCapture(size_t argument);
    
        // Prepares this code block for execution. This is synchronous. This compile
        // may fail, if you passed JITCompilationCanFail.
        CompilationResult prepareForExecution(
            ExecState*, JITCode::JITType,
            JITCompilationEffort = JITCompilationMustSucceed,
            unsigned bytecodeIndex = UINT_MAX);
        
        // Use this method for asynchronous compiles. This will do a compile at some
        // point in time between when you called into this method and some point in the
        // future. If you're lucky then it might complete before this method returns.
        // Once it completes, the callback is called with the result. If the compile
        // did happen to complete before the method returns, the result of the compile
        // may be returned. If the compile didn't happen to complete yet, or if we
        // didn't happen to notice that the compile already completed, we return
        // CompilationDeferred.
        //
        // Note that asynchronous compiles don't actually complete unless you call into
        // DFG::Worklist::completeAllReadyPlansForVM(). You usually force a call to
        // this on the main thread by listening to the callback's
        // compilationDidBecomeReadyAsynchronously() notification. Note that this call
        // happens on another thread.
        CompilationResult prepareForExecutionAsynchronously(
            ExecState*, JITCode::JITType, PassRefPtr<DeferredCompilationCallback>,
            JITCompilationEffort = JITCompilationMustSucceed,
            unsigned bytecodeIndex = UINT_MAX);
        
        // Exactly equivalent to codeBlock->ownerExecutable()->installCode(codeBlock);
        void install();
        
        // Exactly equivalent to codeBlock->ownerExecutable()->newReplacementCodeBlockFor(codeBlock->specializationKind())
        PassRefPtr<CodeBlock> newReplacement();
        
        void setJITCode(PassRefPtr<JITCode> code, MacroAssemblerCodePtr codeWithArityCheck)
        {
            ConcurrentJITLocker locker(m_lock);
            WTF::storeStoreFence(); // This is probably not needed because the lock will also do something similar, but it's good to be paranoid.
            m_jitCode = code;
            m_jitCodeWithArityCheck = codeWithArityCheck;
    #if ENABLE(DFG_JIT)
            if (JITCode::isOptimizingJIT(JITCode::jitTypeFor(m_jitCode)))
                m_vm->heap.m_dfgCodeBlocks.m_set.add(this);
    #endif
        }
        PassRefPtr<JITCode> jitCode() { return m_jitCode; }
        MacroAssemblerCodePtr jitCodeWithArityCheck() { return m_jitCodeWithArityCheck; }
        JITCode::JITType jitType() const
        {
            JITCode* jitCode = m_jitCode.get();
            WTF::loadLoadFence();
            JITCode::JITType result = JITCode::jitTypeFor(jitCode);
            WTF::loadLoadFence(); // This probably isn't needed. Oh well, paranoia is good.
            return result;
        }
    
    #if ENABLE(JIT)
        bool hasBaselineJITProfiling() const
        {
            return jitType() == JITCode::BaselineJIT;
        }
        void jettison();
        
        virtual CodeBlock* replacement() = 0;
    
        virtual DFG::CapabilityLevel capabilityLevelInternal() = 0;
        DFG::CapabilityLevel capabilityLevel()
        {
            DFG::CapabilityLevel result = capabilityLevelInternal();
            m_capabilityLevelState = result;
            return result;
        }
        DFG::CapabilityLevel capabilityLevelState() { return m_capabilityLevelState; }
    
        bool hasOptimizedReplacement();
    #endif
    
        ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }
    
        void setVM(VM* vm) { m_vm = vm; }
        VM* vm() { return m_vm; }
    
        void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; }
        int thisRegister() const { return m_thisRegister; }
    
        bool needsFullScopeChain() const { return m_unlinkedCode->needsFullScopeChain(); }
        bool usesEval() const { return m_unlinkedCode->usesEval(); }
    
        void setArgumentsRegister(int argumentsRegister)
        {
            ASSERT(argumentsRegister != -1);
            m_argumentsRegister = argumentsRegister;
            ASSERT(usesArguments());
        }
        int argumentsRegister() const
        {
            ASSERT(usesArguments());
            return m_argumentsRegister;
        }
        int uncheckedArgumentsRegister()
        {
            if (!usesArguments())
                return InvalidVirtualRegister;
            return argumentsRegister();
        }
        void setActivationRegister(int activationRegister)
        {
            m_activationRegister = activationRegister;
        }
        int activationRegister() const
        {
            ASSERT(needsFullScopeChain());
            return m_activationRegister;
        }
        int uncheckedActivationRegister()
        {
            if (!needsFullScopeChain())
                return InvalidVirtualRegister;
            return activationRegister();
        }
        bool usesArguments() const { return m_argumentsRegister != -1; }
    
        bool needsActivation() const
        {
            return m_needsActivation;
        }
    
        bool isCaptured(int operand, InlineCallFrame* inlineCallFrame = 0) const
        {
            if (operandIsArgument(operand))
                return operandToArgument(operand) && usesArguments();
    
            if (inlineCallFrame)
                return inlineCallFrame->capturedVars.get(operand);
    
            // The activation object isn't in the captured region, but it's "captured"
            // in the sense that stores to its location can be observed indirectly.
            if (needsActivation() && operand == activationRegister())
                return true;
    
            // Ditto for the arguments object.
            if (usesArguments() && operand == argumentsRegister())
                return true;
    
            // Ditto for the arguments object.
            if (usesArguments() && operand == unmodifiedArgumentsRegister(argumentsRegister()))
                return true;
    
            // We're in global code so there are no locals to capture
            if (!symbolTable())
                return false;
    
            return operand >= symbolTable()->captureStart()
            && operand < symbolTable()->captureEnd();
        }
    
        CodeType codeType() const { return m_unlinkedCode->codeType(); }
        PutPropertySlot::Context putByIdContext() const
        {
            if (codeType() == EvalCode)
                return PutPropertySlot::PutByIdEval;
            return PutPropertySlot::PutById;
        }
    
        SourceProvider* source() const { return m_source.get(); }
        unsigned sourceOffset() const { return m_sourceOffset; }
        unsigned firstLineColumnOffset() const { return m_firstLineColumnOffset; }
    
        size_t numberOfJumpTargets() const { return m_unlinkedCode->numberOfJumpTargets(); }
        unsigned jumpTarget(int index) const { return m_unlinkedCode->jumpTarget(index); }
    
        void createActivation(CallFrame*);
    
        void clearEvalCache();
    
        String nameForRegister(int registerNumber);
    
    #if ENABLE(JIT)
        void setNumberOfStructureStubInfos(size_t size) { m_structureStubInfos.grow(size); }
        void sortStructureStubInfos();
        size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); }
        StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; }
    
        void setNumberOfByValInfos(size_t size) { m_byValInfos.grow(size); }
        size_t numberOfByValInfos() const { return m_byValInfos.size(); }
        ByValInfo& byValInfo(size_t index) { return m_byValInfos[index]; }
    
        void setNumberOfCallLinkInfos(size_t size) { m_callLinkInfos.grow(size); }
        size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); }
        CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; }
    #endif
    
    #if ENABLE(VALUE_PROFILER)
        unsigned numberOfArgumentValueProfiles()
        {
            ASSERT(m_numParameters >= 0);
            ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters));
            return m_argumentValueProfiles.size();
        }
        ValueProfile* valueProfileForArgument(unsigned argumentIndex)
        {
            ValueProfile* result = &m_argumentValueProfiles[argumentIndex];
            ASSERT(result->m_bytecodeOffset == -1);
            return result;
        }
    
        unsigned numberOfValueProfiles() { return m_valueProfiles.size(); }
        ValueProfile* valueProfile(int index) { return &m_valueProfiles[index]; }
        ValueProfile* valueProfileForBytecodeOffset(int bytecodeOffset)
        {
            ValueProfile* result = binarySearch<ValueProfile, int>(
                                                                   m_valueProfiles, m_valueProfiles.size(), bytecodeOffset,
                                                                   getValueProfileBytecodeOffset<ValueProfile>);
            ASSERT(result->m_bytecodeOffset != -1);
            ASSERT(instructions()[bytecodeOffset + opcodeLength(
                                                                m_vm->interpreter->getOpcodeID(
                                                                                               instructions()[
                                                                                                              bytecodeOffset].u.opcode)) - 1].u.profile == result);
            return result;
        }
        SpeculatedType valueProfilePredictionForBytecodeOffset(const ConcurrentJITLocker& locker, int bytecodeOffset)
        {
            return valueProfileForBytecodeOffset(bytecodeOffset)->computeUpdatedPrediction(locker);
        }
    
        unsigned totalNumberOfValueProfiles()
        {
            return numberOfArgumentValueProfiles() + numberOfValueProfiles();
        }
        ValueProfile* getFromAllValueProfiles(unsigned index)
        {
            if (index < numberOfArgumentValueProfiles())
                return valueProfileForArgument(index);
            return valueProfile(index - numberOfArgumentValueProfiles());
        }
    
        RareCaseProfile* addRareCaseProfile(int bytecodeOffset)
        {
            m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset));
            return &m_rareCaseProfiles.last();
        }
        unsigned numberOfRareCaseProfiles() { return m_rareCaseProfiles.size(); }
        RareCaseProfile* rareCaseProfile(int index) { return &m_rareCaseProfiles[index]; }
        RareCaseProfile* rareCaseProfileForBytecodeOffset(int bytecodeOffset)
        {
            return tryBinarySearch<RareCaseProfile, int>(
                                                         m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset,
                                                         getRareCaseProfileBytecodeOffset);
        }
    
        bool likelyToTakeSlowCase(int bytecodeOffset)
        {
            if (!hasBaselineJITProfiling())
                return false;
            unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            return value >= Options::likelyToTakeSlowCaseMinimumCount();
        }
    
        bool couldTakeSlowCase(int bytecodeOffset)
        {
            if (!hasBaselineJITProfiling())
                return false;
            unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            return value >= Options::couldTakeSlowCaseMinimumCount();
        }
    
        RareCaseProfile* addSpecialFastCaseProfile(int bytecodeOffset)
        {
            m_specialFastCaseProfiles.append(RareCaseProfile(bytecodeOffset));
            return &m_specialFastCaseProfiles.last();
        }
        unsigned numberOfSpecialFastCaseProfiles() { return m_specialFastCaseProfiles.size(); }
        RareCaseProfile* specialFastCaseProfile(int index) { return &m_specialFastCaseProfiles[index]; }
        RareCaseProfile* specialFastCaseProfileForBytecodeOffset(int bytecodeOffset)
        {
            return tryBinarySearch<RareCaseProfile, int>(
                                                         m_specialFastCaseProfiles, m_specialFastCaseProfiles.size(), bytecodeOffset,
                                                         getRareCaseProfileBytecodeOffset);
        }
    
        bool likelyToTakeSpecialFastCase(int bytecodeOffset)
        {
            if (!hasBaselineJITProfiling())
                return false;
            unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            return specialFastCaseCount >= Options::likelyToTakeSlowCaseMinimumCount();
        }
    
        bool couldTakeSpecialFastCase(int bytecodeOffset)
        {
            if (!hasBaselineJITProfiling())
                return false;
            unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            return specialFastCaseCount >= Options::couldTakeSlowCaseMinimumCount();
        }
    
        bool likelyToTakeDeepestSlowCase(int bytecodeOffset)
        {
            if (!hasBaselineJITProfiling())
                return false;
            unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned value = slowCaseCount - specialFastCaseCount;
            return value >= Options::likelyToTakeSlowCaseMinimumCount();
        }
    
        bool likelyToTakeAnySlowCase(int bytecodeOffset)
        {
            if (!hasBaselineJITProfiling())
                return false;
            unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
            unsigned value = slowCaseCount + specialFastCaseCount;
            return value >= Options::likelyToTakeSlowCaseMinimumCount();
        }
    
        unsigned numberOfArrayProfiles() const { return m_arrayProfiles.size(); }
        const ArrayProfileVector& arrayProfiles() { return m_arrayProfiles; }
        ArrayProfile* addArrayProfile(unsigned bytecodeOffset)
        {
            m_arrayProfiles.append(ArrayProfile(bytecodeOffset));
            return &m_arrayProfiles.last();
        }
        ArrayProfile* getArrayProfile(unsigned bytecodeOffset);
        ArrayProfile* getOrAddArrayProfile(unsigned bytecodeOffset);
    #endif
    
        // Exception handling support
    
        size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
        void allocateHandlers(const Vector<UnlinkedHandlerInfo>& unlinkedHandlers)
        {
            size_t count = unlinkedHandlers.size();
            if (!count)
                return;
            createRareDataIfNecessary();
            m_rareData->m_exceptionHandlers.resize(count);
            for (size_t i = 0; i < count; ++i) {
                m_rareData->m_exceptionHandlers[i].start = unlinkedHandlers[i].start;
                m_rareData->m_exceptionHandlers[i].end = unlinkedHandlers[i].end;
                m_rareData->m_exceptionHandlers[i].target = unlinkedHandlers[i].target;
                m_rareData->m_exceptionHandlers[i].scopeDepth = unlinkedHandlers[i].scopeDepth;
            }
    
        }
        HandlerInfo& exceptionHandler(int index) { RELEASE_ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }
    
        bool hasExpressionInfo() { return m_unlinkedCode->hasExpressionInfo(); }
    
    #if ENABLE(JIT)
        Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow>& callReturnIndexVector()
        {
            createRareDataIfNecessary();
            return m_rareData->m_callReturnIndexVector;
        }
    #endif
    
    #if ENABLE(DFG_JIT)
        SegmentedVector<InlineCallFrame, 4>& inlineCallFrames()
        {
            createRareDataIfNecessary();
            return m_rareData->m_inlineCallFrames;
        }
            
        Vector<CodeOrigin, 0, UnsafeVectorOverflow>& codeOrigins()
        {
            createRareDataIfNecessary();
            return m_rareData->m_codeOrigins;
        }
        
        unsigned addCodeOrigin(CodeOrigin codeOrigin)
        {
            createRareDataIfNecessary();
            unsigned result = m_rareData->m_codeOrigins.size();
            m_rareData->m_codeOrigins.append(codeOrigin);
            return result;
        }
            
        // Having code origins implies that there has been some inlining.
        bool hasCodeOrigins()
        {
            return m_rareData && !!m_rareData->m_codeOrigins.size();
        }
            
        bool canGetCodeOrigin(unsigned index)
        {
            if (!m_rareData)
                return false;
            return m_rareData->m_codeOrigins.size() > index;
        }
    
        CodeOrigin codeOrigin(unsigned index)
        {
            RELEASE_ASSERT(m_rareData);
            return m_rareData->m_codeOrigins[index];
        }
    
        bool addFrequentExitSite(const DFG::FrequentExitSite& site)
        {
            ASSERT(JITCode::isBaselineCode(jitType()));
            ConcurrentJITLocker locker(m_lock);
            return m_exitProfile.add(locker, site);
        }
            
        bool hasExitSite(const DFG::FrequentExitSite& site) const
        {
            ConcurrentJITLocker locker(m_lock);
            return m_exitProfile.hasExitSite(locker, site);
        }
    
        DFG::ExitProfile& exitProfile() { return m_exitProfile; }
    
        CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles()
        {
            return m_lazyOperandValueProfiles;
        }
    #endif
    
        // Constant Pool
    #if ENABLE(DFG_JIT)
        size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers() + numberOfDFGIdentifiers(); }
        size_t numberOfDFGIdentifiers() const
        {
            if (!JITCode::isOptimizingJIT(jitType()))
                return 0;
    
            return m_jitCode->dfgCommon()->dfgIdentifiers.size();
        }
    
        const Identifier& identifier(int index) const
        {
            size_t unlinkedIdentifiers = m_unlinkedCode->numberOfIdentifiers();
            if (static_cast<unsigned>(index) < unlinkedIdentifiers)
                return m_unlinkedCode->identifier(index);
            ASSERT(JITCode::isOptimizingJIT(jitType()));
            return m_jitCode->dfgCommon()->dfgIdentifiers[index - unlinkedIdentifiers];
        }
    #else
        size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers(); }
        const Identifier& identifier(int index) const { return m_unlinkedCode->identifier(index); }
    #endif
    
        Vector<WriteBarrier<Unknown> >& constants() { return m_constantRegisters; }
        size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
        unsigned addConstant(JSValue v)
        {
            unsigned result = m_constantRegisters.size();
            m_constantRegisters.append(WriteBarrier<Unknown>());
            m_constantRegisters.last().set(m_globalObject->vm(), m_ownerExecutable.get(), v);
            return result;
        }
    
        unsigned addConstantLazily()
        {
            unsigned result = m_constantRegisters.size();
            m_constantRegisters.append(WriteBarrier<Unknown>());
            return result;
        }
    
        bool findConstant(JSValue, unsigned& result);
        unsigned addOrFindConstant(JSValue);
        WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
        ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
        ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }
    
        FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
        int numberOfFunctionDecls() { return m_functionDecls.size(); }
        FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }
    
        RegExp* regexp(int index) const { return m_unlinkedCode->regexp(index); }
    
        unsigned numberOfConstantBuffers() const
        {
            if (!m_rareData)
                return 0;
            return m_rareData->m_constantBuffers.size();
        }
        unsigned addConstantBuffer(const Vector<JSValue>& buffer)
        {
            createRareDataIfNecessary();
            unsigned size = m_rareData->m_constantBuffers.size();
            m_rareData->m_constantBuffers.append(buffer);
            return size;
        }
    
        Vector<JSValue>& constantBufferAsVector(unsigned index)
        {
            ASSERT(m_rareData);
            return m_rareData->m_constantBuffers[index];
        }
        JSValue* constantBuffer(unsigned index)
        {
            return constantBufferAsVector(index).data();
        }
    
        JSGlobalObject* globalObject() { return m_globalObject.get(); }
    
        JSGlobalObject* globalObjectFor(CodeOrigin);
    
        // Jump Tables
    
        size_t numberOfSwitchJumpTables() const { return m_rareData ? m_rareData->m_switchJumpTables.size() : 0; }
        SimpleJumpTable& addSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_switchJumpTables.append(SimpleJumpTable()); return m_rareData->m_switchJumpTables.last(); }
        SimpleJumpTable& switchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_switchJumpTables[tableIndex]; }
        void clearSwitchJumpTables()
        {
            if (!m_rareData)
                return;
            m_rareData->m_switchJumpTables.clear();
        }
    
        size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
        StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
        StringJumpTable& stringSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }
    
    
        SharedSymbolTable* symbolTable() const { return m_unlinkedCode->symbolTable(); }
    
        EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }
    
        enum ShrinkMode {
            // Shrink prior to generating machine code that may point directly into vectors.
            EarlyShrink,
    
            // Shrink after generating machine code, and after possibly creating new vectors
            // and appending to others. At this time it is not safe to shrink certain vectors
            // because we would have generated machine code that references them directly.
            LateShrink
        };
        void shrinkToFit(ShrinkMode);
    
        void copyPostParseDataFrom(CodeBlock* alternative);
        void copyPostParseDataFromAlternative();
    
        // Functions for controlling when JITting kicks in, in a mixed mode
        // execution world.
    
        bool checkIfJITThresholdReached()
        {
            return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this);
        }
    
        void dontJITAnytimeSoon()
        {
            m_llintExecuteCounter.deferIndefinitely();
        }
    
        void jitAfterWarmUp()
        {
            m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITAfterWarmUp(), this);
        }
    
        void jitSoon()
        {
            m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITSoon(), this);
        }
    
        const ExecutionCounter& llintExecuteCounter() const
        {
            return m_llintExecuteCounter;
        }
    
        // Functions for controlling when tiered compilation kicks in. This
        // controls both when the optimizing compiler is invoked and when OSR
        // entry happens. Two triggers exist: the loop trigger and the return
        // trigger. In either case, when an addition to m_jitExecuteCounter
        // causes it to become non-negative, the optimizing compiler is
        // invoked. This includes a fast check to see if this CodeBlock has
        // already been optimized (i.e. replacement() returns a CodeBlock
        // that was optimized with a higher tier JIT than this one). In the
        // case of the loop trigger, if the optimized compilation succeeds
        // (or has already succeeded in the past) then OSR is attempted to
        // redirect program flow into the optimized code.
    
        // These functions are called from within the optimization triggers,
        // and are used as a single point at which we define the heuristics
        // for how much warm-up is mandated before the next optimization
        // trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
        // as this is called from the CodeBlock constructor.
    
        // When we observe a lot of speculation failures, we trigger a
        // reoptimization. But each time, we increase the optimization trigger
        // to avoid thrashing.
        unsigned reoptimizationRetryCounter() const;
        void countReoptimization();
    #if ENABLE(JIT)
        unsigned numberOfDFGCompiles();
    
        int32_t codeTypeThresholdMultiplier() const;
    
        int32_t counterValueForOptimizeAfterWarmUp();
        int32_t counterValueForOptimizeAfterLongWarmUp();
        int32_t counterValueForOptimizeSoon();
    
        int32_t* addressOfJITExecuteCounter()
        {
            return &m_jitExecuteCounter.m_counter;
        }
    
        static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_counter); }
        static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_activeThreshold); }
        static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_totalCount); }
    
        const ExecutionCounter& jitExecuteCounter() const { return m_jitExecuteCounter; }
    
        unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }
    
        // Check if the optimization threshold has been reached, and if not,
        // adjust the heuristics accordingly. Returns true if the threshold has
        // been reached.
        bool checkIfOptimizationThresholdReached();
    
        // Call this to force the next optimization trigger to fire. This is
        // rarely wise, since optimization triggers are typically more
        // expensive than executing baseline code.
        void optimizeNextInvocation();
    
        // Call this to prevent optimization from happening again. Note that
        // optimization will still happen after roughly 2^29 invocations,
        // so this is really meant to delay that as much as possible. This
        // is called if optimization failed, and we expect it to fail in
        // the future as well.
        void dontOptimizeAnytimeSoon();
    
        // Call this to reinitialize the counter to its starting state,
        // forcing a warm-up to happen before the next optimization trigger
        // fires. This is called in the CodeBlock constructor. It also
        // makes sense to call this if an OSR exit occurred. Note that
        // OSR exit code is code generated, so the value of the execute
        // counter that this corresponds to is also available directly.
        void optimizeAfterWarmUp();
    
        // Call this to force an optimization trigger to fire only after
        // a lot of warm-up.
        void optimizeAfterLongWarmUp();
    
        // Call this to cause an optimization trigger to fire soon, but
        // not necessarily the next one. This makes sense if optimization
        // succeeds. Successfuly optimization means that all calls are
        // relinked to the optimized code, so this only affects call
        // frames that are still executing this CodeBlock. The value here
        // is tuned to strike a balance between the cost of OSR entry
        // (which is too high to warrant making every loop back edge to
        // trigger OSR immediately) and the cost of executing baseline
        // code (which is high enough that we don't necessarily want to
        // have a full warm-up). The intuition for calling this instead of
        // optimizeNextInvocation() is for the case of recursive functions
        // with loops. Consider that there may be N call frames of some
        // recursive function, for a reasonably large value of N. The top
        // one triggers optimization, and then returns, and then all of
        // the others return. We don't want optimization to be triggered on
        // each return, as that would be superfluous. It only makes sense
        // to trigger optimization if one of those functions becomes hot
        // in the baseline code.
        void optimizeSoon();
    
        void forceOptimizationSlowPathConcurrently();
    
        void setOptimizationThresholdBasedOnCompilationResult(CompilationResult);
        
        uint32_t osrExitCounter() const { return m_osrExitCounter; }
    
        void countOSRExit() { m_osrExitCounter++; }
    
        uint32_t* addressOfOSRExitCounter() { return &m_osrExitCounter; }
    
        static ptrdiff_t offsetOfOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_osrExitCounter); }
    
        uint32_t adjustedExitCountThreshold(uint32_t desiredThreshold);
        uint32_t exitCountThresholdForReoptimization();
        uint32_t exitCountThresholdForReoptimizationFromLoop();
        bool shouldReoptimizeNow();
        bool shouldReoptimizeFromLoopNow();
    #else // No JIT
        void optimizeAfterWarmUp() { }
        unsigned numberOfDFGCompiles() { return 0; }
    #endif
    
    #if ENABLE(VALUE_PROFILER)
        bool shouldOptimizeNow();
        void updateAllValueProfilePredictions(OperationInProgress = NoOperation);
        void updateAllArrayPredictions();
        void updateAllPredictions(OperationInProgress = NoOperation);
    #else
        bool updateAllPredictionsAndCheckIfShouldOptimizeNow() { return false; }
        void updateAllValueProfilePredictions(OperationInProgress = NoOperation) { }
        void updateAllArrayPredictions() { }
        void updateAllPredictions(OperationInProgress = NoOperation) { }
    #endif
    
    #if ENABLE(JIT)
        void reoptimize();
    #endif
    
    #if ENABLE(VERBOSE_VALUE_PROFILE)
        void dumpValueProfiles();
    #endif
    
        // FIXME: Make these remaining members private.
    
        int m_numCalleeRegisters;
        int m_numVars;
        bool m_isConstructor;
        
        // This is intentionally public; it's the responsibility of anyone doing any
        // of the following to hold the lock:
        //
        // - Modifying any inline cache in this code block.
        //
        // - Quering any inline cache in this code block, from a thread other than
        //   the main thread.
        //
        // Additionally, it's only legal to modify the inline cache on the main
        // thread. This means that the main thread can query the inline cache without
        // locking. This is crucial since executing the inline cache is effectively
        // "querying" it.
        //
        // Another exception to the rules is that the GC can do whatever it wants
        // without holding any locks, because the GC is guaranteed to wait until any
        // concurrent compilation threads finish what they're doing.
        mutable ConcurrentJITLock m_lock;
        
        bool m_shouldAlwaysBeInlined;
        bool m_allTransitionsHaveBeenMarked; // Initialized and used on every GC.
        
    protected:
    #if ENABLE(JIT)
        virtual void jettisonImpl() = 0;
    #endif
        virtual void visitWeakReferences(SlotVisitor&);
        virtual void finalizeUnconditionally();
    
    #if ENABLE(DFG_JIT)
        void tallyFrequentExitSites();
    #else
        void tallyFrequentExitSites() { }
    #endif
    
    private:
        friend class DFGCodeBlocks;
        
        CompilationResult prepareForExecutionImpl(
            ExecState*, JITCode::JITType, JITCompilationEffort, unsigned bytecodeIndex,
            PassRefPtr<DeferredCompilationCallback>);
        
        void noticeIncomingCall(ExecState* callerFrame);
        
        double optimizationThresholdScalingFactor();
    
    #if ENABLE(JIT)
        ClosureCallStubRoutine* findClosureCallForReturnPC(ReturnAddressPtr);
    #endif
            
    #if ENABLE(VALUE_PROFILER)
        void updateAllPredictionsAndCountLiveness(OperationInProgress, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles);
    #endif
    
        void setConstantRegisters(const Vector<WriteBarrier<Unknown> >& constants)
        {
            size_t count = constants.size();
            m_constantRegisters.resize(count);
            for (size_t i = 0; i < count; i++)
                m_constantRegisters[i].set(*m_vm, ownerExecutable(), constants[i].get());
        }
    
        void dumpBytecode(PrintStream&, ExecState*, const Instruction* begin, const Instruction*&);
    
        CString registerName(int r) const;
        void printUnaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
        void printBinaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
        void printConditionalJump(PrintStream&, ExecState*, const Instruction*, const Instruction*&, int location, const char* op);
        void printGetByIdOp(PrintStream&, ExecState*, int location, const Instruction*&);
        void printGetByIdCacheStatus(PrintStream&, ExecState*, int location);
        enum CacheDumpMode { DumpCaches, DontDumpCaches };
        void printCallOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op, CacheDumpMode, bool& hasPrintedProfiling);
        void printPutByIdOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
        void beginDumpProfiling(PrintStream&, bool& hasPrintedProfiling);
        void dumpValueProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
        void dumpArrayProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
    #if ENABLE(VALUE_PROFILER)
        void dumpRareCaseProfile(PrintStream&, const char* name, RareCaseProfile*, bool& hasPrintedProfiling);
    #endif
            
    #if ENABLE(DFG_JIT)
        bool shouldImmediatelyAssumeLivenessDuringScan()
        {
            // Null m_dfgData means that this is a baseline JIT CodeBlock. Baseline JIT
            // CodeBlocks don't need to be jettisoned when their weak references go
            // stale. So if a basline JIT CodeBlock gets scanned, we can assume that
            // this means that it's live.
            if (!JITCode::isOptimizingJIT(jitType()))
                return true;
    
            // For simplicity, we don't attempt to jettison code blocks during GC if
            // they are executing. Instead we strongly mark their weak references to
            // allow them to continue to execute soundly.
            if (m_jitCode->dfgCommon()->mayBeExecuting)
                return true;
    
            if (Options::forceDFGCodeBlockLiveness())
                return true;
    
            return false;
        }
    #else
        bool shouldImmediatelyAssumeLivenessDuringScan() { return true; }
    #endif
        
        void propagateTransitions(SlotVisitor&);
        void determineLiveness(SlotVisitor&);
            
        void stronglyVisitStrongReferences(SlotVisitor&);
        void stronglyVisitWeakReferences(SlotVisitor&);
    
        void createRareDataIfNecessary()
        {
            if (!m_rareData)
                m_rareData = adoptPtr(new RareData);
        }
    
    #if ENABLE(JIT)
        void resetStubInternal(RepatchBuffer&, StructureStubInfo&);
        void resetStubDuringGCInternal(RepatchBuffer&, StructureStubInfo&);
    #endif
        WriteBarrier<UnlinkedCodeBlock> m_unlinkedCode;
        int m_numParameters;
        WriteBarrier<ScriptExecutable> m_ownerExecutable;
        VM* m_vm;
    
        RefCountedArray<Instruction> m_instructions;
        int m_thisRegister;
        int m_argumentsRegister;
        int m_activationRegister;
    
        bool m_isStrictMode;
        bool m_needsActivation;
    
        RefPtr<SourceProvider> m_source;
        unsigned m_sourceOffset;
        unsigned m_firstLineColumnOffset;
        unsigned m_codeType;
    
    #if ENABLE(LLINT)
        SegmentedVector<LLIntCallLinkInfo, 8> m_llintCallLinkInfos;
        SentinelLinkedList<LLIntCallLinkInfo, BasicRawSentinelNode<LLIntCallLinkInfo> > m_incomingLLIntCalls;
    #endif
        RefPtr<JITCode> m_jitCode;
        MacroAssemblerCodePtr m_jitCodeWithArityCheck;
    #if ENABLE(JIT)
        Vector<StructureStubInfo> m_structureStubInfos;
        Vector<ByValInfo> m_byValInfos;
        Vector<CallLinkInfo> m_callLinkInfos;
        SentinelLinkedList<CallLinkInfo, BasicRawSentinelNode<CallLinkInfo> > m_incomingCalls;
    #endif
    #if ENABLE(DFG_JIT) || ENABLE(LLINT)
        OwnPtr<CompactJITCodeMap> m_jitCodeMap;
    #endif
    #if ENABLE(DFG_JIT)
        // This is relevant to non-DFG code blocks that serve as the profiled code block
        // for DFG code blocks.
        DFG::ExitProfile m_exitProfile;
        CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles;
    #endif
    #if ENABLE(VALUE_PROFILER)
        Vector<ValueProfile> m_argumentValueProfiles;
        SegmentedVector<ValueProfile, 8> m_valueProfiles;
        SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
        SegmentedVector<RareCaseProfile, 8> m_specialFastCaseProfiles;
        SegmentedVector<ArrayAllocationProfile, 8> m_arrayAllocationProfiles;
        ArrayProfileVector m_arrayProfiles;
    #endif
        SegmentedVector<ObjectAllocationProfile, 8> m_objectAllocationProfiles;
    
        // Constant Pool
        Vector<Identifier> m_additionalIdentifiers;
        COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
        // TODO: This could just be a pointer to m_unlinkedCodeBlock's data, but the DFG mutates
        // it, so we're stuck with it for now.
        Vector<WriteBarrier<Unknown> > m_constantRegisters;
        Vector<WriteBarrier<FunctionExecutable> > m_functionDecls;
        Vector<WriteBarrier<FunctionExecutable> > m_functionExprs;
    
        RefPtr<CodeBlock> m_alternative;
        
        ExecutionCounter m_llintExecuteCounter;
    
        ExecutionCounter m_jitExecuteCounter;
        int32_t m_totalJITExecutions;
        uint32_t m_osrExitCounter;
        uint16_t m_optimizationDelayCounter;
        uint16_t m_reoptimizationRetryCounter;
        
        mutable CodeBlockHash m_hash;
    
        struct RareData {
            WTF_MAKE_FAST_ALLOCATED;
        public:
            Vector<HandlerInfo> m_exceptionHandlers;
    
            // Buffers used for large array literals
            Vector<Vector<JSValue> > m_constantBuffers;
    
            // Jump Tables
            Vector<SimpleJumpTable> m_switchJumpTables;
            Vector<StringJumpTable> m_stringSwitchJumpTables;
    
            EvalCodeCache m_evalCodeCache;
    
    #if ENABLE(JIT)
            Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow> m_callReturnIndexVector;
    #endif
    #if ENABLE(DFG_JIT)
            SegmentedVector<InlineCallFrame, 4> m_inlineCallFrames;
            Vector<CodeOrigin, 0, UnsafeVectorOverflow> m_codeOrigins;
    #endif
        };
    #if COMPILER(MSVC)
        friend void WTF::deleteOwnedPtr<RareData>(RareData*);
    #endif
        OwnPtr<RareData> m_rareData;
    #if ENABLE(JIT)
        DFG::CapabilityLevel m_capabilityLevelState;
    #endif
    };
    
    // Program code is not marked by any function, so we make the global object
    // responsible for marking it.
    
    class GlobalCodeBlock : public CodeBlock {
    protected:
        GlobalCodeBlock(CopyParsedBlockTag, GlobalCodeBlock& other)
        : CodeBlock(CopyParsedBlock, other)
        {
        }
            
        GlobalCodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
            : CodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, sourceOffset, firstLineColumnOffset)
        {
        }
    };
    
    class ProgramCodeBlock : public GlobalCodeBlock {
    public:
        ProgramCodeBlock(CopyParsedBlockTag, ProgramCodeBlock& other)
        : GlobalCodeBlock(CopyParsedBlock, other)
        {
        }
    
        ProgramCodeBlock(ProgramExecutable* ownerExecutable, UnlinkedProgramCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned firstLineColumnOffset)
            : GlobalCodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, 0, firstLineColumnOffset)
        {
        }
    
    #if ENABLE(JIT)
    protected:
        virtual void jettisonImpl();
        virtual CodeBlock* replacement();
        virtual DFG::CapabilityLevel capabilityLevelInternal();
    #endif
    };
    
    class EvalCodeBlock : public GlobalCodeBlock {
    public:
        EvalCodeBlock(CopyParsedBlockTag, EvalCodeBlock& other)
        : GlobalCodeBlock(CopyParsedBlock, other)
        {
        }
            
        EvalCodeBlock(EvalExecutable* ownerExecutable, UnlinkedEvalCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider)
            : GlobalCodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, 0, 1)
        {
        }
        
        const Identifier& variable(unsigned index) { return unlinkedEvalCodeBlock()->variable(index); }
        unsigned numVariables() { return unlinkedEvalCodeBlock()->numVariables(); }
        
    #if ENABLE(JIT)
    protected:
        virtual void jettisonImpl();
        virtual CodeBlock* replacement();
        virtual DFG::CapabilityLevel capabilityLevelInternal();
    #endif
        
    private:
        UnlinkedEvalCodeBlock* unlinkedEvalCodeBlock() const { return jsCast<UnlinkedEvalCodeBlock*>(unlinkedCodeBlock()); }
    };
    
    class FunctionCodeBlock : public CodeBlock {
    public:
        FunctionCodeBlock(CopyParsedBlockTag, FunctionCodeBlock& other)
        : CodeBlock(CopyParsedBlock, other)
        {
        }
    
        FunctionCodeBlock(FunctionExecutable* ownerExecutable, UnlinkedFunctionCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
            : CodeBlock(ownerExecutable, unlinkedCodeBlock, scope, sourceProvider, sourceOffset, firstLineColumnOffset)
        {
        }
        
    #if ENABLE(JIT)
    protected:
        virtual void jettisonImpl();
        virtual CodeBlock* replacement();
        virtual DFG::CapabilityLevel capabilityLevelInternal();
    #endif
    };
    
    inline CodeBlock* baselineCodeBlockForInlineCallFrame(InlineCallFrame* inlineCallFrame)
    {
        RELEASE_ASSERT(inlineCallFrame);
        ExecutableBase* executable = inlineCallFrame->executable.get();
        RELEASE_ASSERT(executable->structure()->classInfo() == FunctionExecutable::info());
        return static_cast<FunctionExecutable*>(executable)->baselineCodeBlockFor(inlineCallFrame->isCall ? CodeForCall : CodeForConstruct);
    }
    
    inline CodeBlock* baselineCodeBlockForOriginAndBaselineCodeBlock(const CodeOrigin& codeOrigin, CodeBlock* baselineCodeBlock)
    {
        if (codeOrigin.inlineCallFrame)
            return baselineCodeBlockForInlineCallFrame(codeOrigin.inlineCallFrame);
        return baselineCodeBlock;
    }
    
    inline int CodeBlock::argumentIndexAfterCapture(size_t argument)
    {
        if (argument >= static_cast<size_t>(symbolTable()->parameterCount()))
            return CallFrame::argumentOffset(argument);
        
        const SlowArgument* slowArguments = symbolTable()->slowArguments();
        if (!slowArguments || slowArguments[argument].status == SlowArgument::Normal)
            return CallFrame::argumentOffset(argument);
        
        ASSERT(slowArguments[argument].status == SlowArgument::Captured);
        return slowArguments[argument].index;
    }
    
    inline Register& ExecState::r(int index)
    {
        CodeBlock* codeBlock = this->codeBlock();
        if (codeBlock->isConstantRegisterIndex(index))
            return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index));
        return this[index];
    }
    
    inline Register& ExecState::uncheckedR(int index)
    {
        RELEASE_ASSERT(index < FirstConstantRegisterIndex);
        return this[index];
    }
    
    inline JSValue ExecState::argumentAfterCapture(size_t argument)
    {
        if (argument >= argumentCount())
            return jsUndefined();
        
        if (!codeBlock())
            return this[argumentOffset(argument)].jsValue();
        
        return this[codeBlock()->argumentIndexAfterCapture(argument)].jsValue();
    }
    
    #if ENABLE(DFG_JIT)
    inline void DFGCodeBlocks::mark(void* candidateCodeBlock)
    {
        // We have to check for 0 and -1 because those are used by the HashMap as markers.
        uintptr_t value = reinterpret_cast<uintptr_t>(candidateCodeBlock);
        
        // This checks for both of those nasty cases in one go.
        // 0 + 1 = 1
        // -1 + 1 = 0
        if (value + 1 <= 1)
            return;
        
        HashSet<CodeBlock*>::iterator iter = m_set.find(static_cast<CodeBlock*>(candidateCodeBlock));
        if (iter == m_set.end())
            return;
        
        (*iter)->m_jitCode->dfgCommon()->mayBeExecuting = true;
    }
    #endif
    
    } // namespace JSC
    
    #endif // CodeBlock_h