BinaryEncodingCNL.cpp 91.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*===================== begin_copyright_notice ==================================

Copyright (c) 2017 Intel Corporation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


======================= end_copyright_notice ==================================*/

#include "BinaryEncodingCNL.h"
#include "BuildIR.h"
using namespace vISA;

////////////////////////////// DST ////////////////////////////////////////


////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////// SRC ///////////////
////////////////////////////// SRC ///////////////

uint32_t BinaryEncodingBase::getEUOpcode(G4_opcode g4opc)
{
    G9HDL::EU_OPCODE euopcode = G9HDL::EU_OPCODE_ILLEGAL;
    switch (g4opc)
    {
        //3src - complete
    case G4_bfe: euopcode = G9HDL::EU_OPCODE_BFE; break;
    case G4_bfi2: euopcode = G9HDL::EU_OPCODE_BFI2; break;
    case G4_csel: euopcode = G9HDL::EU_OPCODE_CSEL; break;
    case G4_lrp: euopcode = G9HDL::EU_OPCODE_LRP; break;
    case G4_mad: euopcode = G9HDL::EU_OPCODE_MAD; break;
    case G4_madm: euopcode = G9HDL::EU_OPCODE_MADM; break;

        //1src - complete
    case G4_bfrev: euopcode = G9HDL::EU_OPCODE_BFREV; break;
    case G4_cbit: euopcode = G9HDL::EU_OPCODE_CBIT; break;
    case G4_fbh: euopcode = G9HDL::EU_OPCODE_FBH; break;
    case G4_fbl: euopcode = G9HDL::EU_OPCODE_FBL; break;
    case G4_lzd: euopcode = G9HDL::EU_OPCODE_LZD; break;
    case G4_mov: euopcode = G9HDL::EU_OPCODE_MOV; break;
    case G4_movi: euopcode = G9HDL::EU_OPCODE_MOVI; break;
    case G4_not: euopcode = G9HDL::EU_OPCODE_NOT; break;
    case G4_rndd: euopcode = G9HDL::EU_OPCODE_RNDD; break;
    case G4_rnde: euopcode = G9HDL::EU_OPCODE_RNDE; break;
    case G4_rndu: euopcode = G9HDL::EU_OPCODE_RNDU; break;
    case G4_rndz: euopcode = G9HDL::EU_OPCODE_RNDZ; break;
    case G4_frc: euopcode = G9HDL::EU_OPCODE_FRC; break;

        //2src - complete
    case G4_add: euopcode = G9HDL::EU_OPCODE_ADD; break;
    case G4_addc: euopcode = G9HDL::EU_OPCODE_ADDC; break;
    case G4_and: euopcode = G9HDL::EU_OPCODE_AND; break;
    case G4_asr: euopcode = G9HDL::EU_OPCODE_ASR; break;
    case G4_avg: euopcode = G9HDL::EU_OPCODE_AVG; break;
    case G4_bfi1: euopcode = G9HDL::EU_OPCODE_BFI1; break;
    case G4_cmp: euopcode = G9HDL::EU_OPCODE_CMP; break;
    case G4_cmpn: euopcode = G9HDL::EU_OPCODE_CMPN; break;
    case G4_dp2: euopcode = G9HDL::EU_OPCODE_DP2; break;
    case G4_dp3: euopcode = G9HDL::EU_OPCODE_DP3; break;
    case G4_dp4: euopcode = G9HDL::EU_OPCODE_DP4; break;
    case G4_dph: euopcode = G9HDL::EU_OPCODE_DPH; break;
    case G4_line: euopcode = G9HDL::EU_OPCODE_LINE; break;
    case G4_mac: euopcode = G9HDL::EU_OPCODE_MAC; break;
    case G4_mach: euopcode = G9HDL::EU_OPCODE_MACH; break;
    case G4_mul: euopcode = G9HDL::EU_OPCODE_MUL; break;
    case G4_or: euopcode = G9HDL::EU_OPCODE_OR; break;
    case G4_pln: euopcode = G9HDL::EU_OPCODE_PLN; break;
    case G4_sad2: euopcode = G9HDL::EU_OPCODE_SAD2; break;
    case G4_sada2: euopcode = G9HDL::EU_OPCODE_SADA2; break;
    case G4_sel: euopcode = G9HDL::EU_OPCODE_SEL; break;
    case G4_shl: euopcode = G9HDL::EU_OPCODE_SHL; break;
    case G4_shr: euopcode = G9HDL::EU_OPCODE_SHR; break;
    case G4_xor: euopcode = G9HDL::EU_OPCODE_XOR; break;
    case G4_subb: euopcode = G9HDL::EU_OPCODE_SUBB; break;

        //send type
    case G4_send: euopcode = G9HDL::EU_OPCODE_SEND; break;
    case G4_sendc: euopcode = G9HDL::EU_OPCODE_SENDC; break;
    case G4_sends: euopcode = G9HDL::EU_OPCODE_SENDS; break;
    case G4_sendsc: euopcode = G9HDL::EU_OPCODE_SENDSC; break;

        //math type
    case G4_math: euopcode = G9HDL::EU_OPCODE_MATH; break;

        //control flow
    case G4_brc: euopcode = G9HDL::EU_OPCODE_BRC; break;
    case G4_brd: euopcode = G9HDL::EU_OPCODE_BRD; break;
    case G4_break: euopcode = G9HDL::EU_OPCODE_BREAK; break;
    case G4_call: euopcode = G9HDL::EU_OPCODE_CALL; break;
        //case G4_calla: euopcode = G9HDL::EU_OPCODE_CALLA; break;
    case G4_cont: euopcode = G9HDL::EU_OPCODE_CONT; break;
    case G4_else: euopcode = G9HDL::EU_OPCODE_ELSE; break;
    case G4_endif: euopcode = G9HDL::EU_OPCODE_ENDIF; break;
    case G4_goto: euopcode = G9HDL::EU_OPCODE_GOTO; break;
    case G4_halt: euopcode = G9HDL::EU_OPCODE_HALT; break;
    case G4_if: euopcode = G9HDL::EU_OPCODE_IF; break;
    case G4_jmpi: euopcode = G9HDL::EU_OPCODE_JMPI; break;
    case G4_join: euopcode = G9HDL::EU_OPCODE_JOIN; break;
    case G4_return: euopcode = G9HDL::EU_OPCODE_RET; break;
    case G4_wait: euopcode = G9HDL::EU_OPCODE_WAIT; break;
    case G4_while: euopcode = G9HDL::EU_OPCODE_WHILE; break;

        //misc:
    case G4_nop: euopcode = G9HDL::EU_OPCODE_NOP; break;
    case G4_illegal: euopcode = G9HDL::EU_OPCODE_ILLEGAL; break;
    case G4_smov: euopcode = G9HDL::EU_OPCODE_SMOV; break;

    default: break;
        assert(false && "Invalid G4 opcode!");
    }
    return (uint32_t)euopcode;
}

/// \brief Returns the HDL immediate type for a given source operand
///
static inline int GetOperandSrcHDLImmType(G4_Type srcType)
{
    int type = G9HDL::SRCIMMTYPE_UD;
    if (getGenxPlatform() == GENX_CNL)
    {
        switch (srcType) { 
        case Type_UD: type = G9HDL::SRCIMMTYPE_UD; break;
        case Type_D:  type = G9HDL::SRCIMMTYPE_D;  break;
        case Type_UW: type = G9HDL::SRCIMMTYPE_UW; break;
        case Type_W:  type = G9HDL::SRCIMMTYPE_W;  break;
        case Type_UV: type = G9HDL::SRCIMMTYPE_UV; break;
        case Type_VF: type = G9HDL::SRCIMMTYPE_VF; break;
        case Type_V:  type = G9HDL::SRCIMMTYPE_V;  break;
        case Type_F:  type = G9HDL::SRCIMMTYPE_F;  break;
        case Type_UQ: type = G9HDL::SRCIMMTYPE_UQ; break;
        case Type_Q:  type = G9HDL::SRCIMMTYPE_Q;  break;
        case Type_DF: type = G9HDL::SRCIMMTYPE_DF;  break;
        case Type_HF: type = G9HDL::SRCIMMTYPE_HF;  break;
        default: MUST_BE_TRUE(false, "invalid type"); break;
        }
    }
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    else
    {
        switch (srcType) { 
        case Type_UD: type = G11HDL::SRCIMMTYPE_UD; break;
        case Type_D:  type = G11HDL::SRCIMMTYPE_D;  break;
        case Type_UW: type = G11HDL::SRCIMMTYPE_UW; break;
        case Type_W:  type = G11HDL::SRCIMMTYPE_W;  break;
        case Type_UV: type = G11HDL::SRCIMMTYPE_UV; break;
        case Type_VF: type = G11HDL::SRCIMMTYPE_VF; break;
        case Type_V:  type = G11HDL::SRCIMMTYPE_V;  break;
        case Type_F:  type = G11HDL::SRCIMMTYPE_F;  break;
        case Type_UQ: type = G11HDL::SRCIMMTYPE_UQ; break;
        case Type_Q:  type = G11HDL::SRCIMMTYPE_Q;  break;
        case Type_DF: type = G11HDL::SRCIMMTYPE_DF;  break;
        case Type_HF: type = G11HDL::SRCIMMTYPE_HF;  break;
        default: MUST_BE_TRUE(false, "invalid type"); break;
        }
    }
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    return type;
}

/// \brief Returns the HDL source type for a given source operand
///
static inline int GetOperandSrcHDLType(G4_Type regType)
{
    int type = G9HDL::SRCTYPE_UD;

    if (getGenxPlatform() == GENX_CNL)
    {
        switch (regType)
        {
        case Type_UD: type = G9HDL::SRCTYPE_UD; break;
        case Type_D:  type = G9HDL::SRCTYPE_D;  break;
        case Type_UW: type = G9HDL::SRCTYPE_UW; break;
        case Type_W:  type = G9HDL::SRCTYPE_W;  break;
        case Type_UB: type = G9HDL::SRCTYPE_UB; break;
        case Type_B:  type = G9HDL::SRCTYPE_B;  break;
        case Type_DF: type = G9HDL::SRCTYPE_DF; break;
        case Type_F:  type = G9HDL::SRCTYPE_F;  break;
        case Type_UQ: type = G9HDL::SRCTYPE_UQ; break;
        case Type_Q:  type = G9HDL::SRCTYPE_Q;  break;
        case Type_HF: type = G9HDL::SRCTYPE_HF; break;
        default: MUST_BE_TRUE(false, "invalid type"); break;
        }
    }
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    else
    {
        switch(regType)
        {
        case Type_UD: type = G11HDL::SRCTYPE_UD; break;
        case Type_D:  type = G11HDL::SRCTYPE_D;  break;
        case Type_UW: type = G11HDL::SRCTYPE_UW; break;
        case Type_W:  type = G11HDL::SRCTYPE_W;  break;
        case Type_UB: type = G11HDL::SRCTYPE_UB; break;
        case Type_B:  type = G11HDL::SRCTYPE_B;  break;
        case Type_DF: type = G11HDL::SRCTYPE_DF; break;
        case Type_F:  type = G11HDL::SRCTYPE_F;  break;
        case Type_UQ: type = G11HDL::SRCTYPE_UQ; break;
        case Type_Q:  type = G11HDL::SRCTYPE_Q;  break;
        case Type_HF: type = G11HDL::SRCTYPE_HF; break;
        default: MUST_BE_TRUE(false, "invalid type"); break;
        }
    }
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    return type;
}

////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////// ENCODERS ///////////////


////////////////////////////// HEADER ///////////////

/// \brief (Header) Field encoder for instruction opcode
///
void BinaryEncodingCNL::EncodeOpCode(G4_INST* inst,
                                     G9HDL::EU_INSTRUCTION_HEADER& header)
{
    G4_opcode opcode = inst->opcode();
    G9HDL::EU_OPCODE euopcode = getEUOpcode(opcode);
	header.SetOpcode(euopcode);
}

G9HDL::EU_OPCODE BinaryEncodingCNL::getEUOpcode(G4_opcode g4opc)
{

240 241 242 243 244 245 246 247
    switch (g4opc)
    {
        // GEN11 specific
    case G4_ror: return G9HDL::EU_OPCODE_ROR;
    case G4_rol: return G9HDL::EU_OPCODE_ROL;
    case G4_dp4a: return G9HDL::EU_OPCODE_DP4A;
    default: break;
    }
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

    return (G9HDL::EU_OPCODE)BinaryEncodingBase::getEUOpcode(g4opc);
}

////////////////////////////// HEADER.CONTROLS ///////////////

/// \brief (Helper) Converts v-isa execution size to HDL exec size enumeration
///
static inline G9HDL::EXECSIZE GetHDLExecSizeFromVISAExecSize( uint32_t execSize )
{
    switch(execSize)
    {
        case ES_1_CHANNEL:
            return G9HDL::EXECSIZE_1_CHANNEL_SCALAR_OPERATION;
        case ES_2_CHANNELS:
            return G9HDL::EXECSIZE_2_CHANNELS;
        case ES_4_CHANNELS:
            return G9HDL::EXECSIZE_4_CHANNELS;
        case ES_8_CHANNELS:
            return G9HDL::EXECSIZE_8_CHANNELS;
        case ES_16_CHANNELS:
            return G9HDL::EXECSIZE_16_CHANNELS;
        case ES_32_CHANNELS:
            return G9HDL::EXECSIZE_32_CHANNELS;
    }
    //Default:
    return G9HDL::EXECSIZE_1_CHANNEL_SCALAR_OPERATION;
}

//////////////////////////////////////////////////////////////////////////
/// \brief (Header) Field encoder for execution size
///
void BinaryEncodingCNL::EncodeExecSize(G4_INST* inst,
                                       G9HDL::EU_INSTRUCTION_CONTROLS_A& controls)
{
    G9HDL::EXECSIZE exSz;
    exSz = GetHDLExecSizeFromVISAExecSize( GetEncodeExecSize( inst ) );
    controls.SetExecsize(exSz);
}

//////////////////////////////////////////////////////////////////////////
/// \brief (Header) Field encoder for access mode bit
///
void BinaryEncodingCNL::EncodeAccessMode(G4_INST* inst,
                                         G9HDL::EU_INSTRUCTION_CONTROLS_A& controls)
{
    if( inst->isAligned1Inst() )  {
        controls.SetAccessmode( G9HDL::ACCESSMODE_ALIGN1 );
    }
    else if( inst->isAligned16Inst() )   {
        controls.SetAccessmode( G9HDL::ACCESSMODE_ALIGN16 );
    }
}

//////////////////////////////////////////////////////////////////////////
/// \brief (Header) Field encoder for QTR control fields
///
void BinaryEncodingCNL::EncodeQtrControl(G4_INST* inst,
                                         G9HDL::EU_INSTRUCTION_CONTROLS_A& controls)
{
    G9HDL::QTRCTRL qtrCtrl = G9HDL::QTRCTRL_1Q;
    G9HDL::NIBCTRL nibCtrl = G9HDL::NIBCTRL::NIBCTRL_EVEN;

    switch (inst->getMaskOffset())
    {
    case 0:
        qtrCtrl = G9HDL::QTRCTRL_1Q;
        nibCtrl = G9HDL::NIBCTRL_ODD;
        break;
    case 4:
        qtrCtrl = G9HDL::QTRCTRL_1Q;
        nibCtrl = G9HDL::NIBCTRL_EVEN;
        break;
    case 8:
        qtrCtrl = G9HDL::QTRCTRL_2Q;
        nibCtrl = G9HDL::NIBCTRL_ODD;
        break;
    case 12:
        qtrCtrl = G9HDL::QTRCTRL_2Q;
        nibCtrl = G9HDL::NIBCTRL_EVEN;
        break;
    case 16:
        qtrCtrl = G9HDL::QTRCTRL_3Q;
        nibCtrl = G9HDL::NIBCTRL_ODD;
        break;
    case 20:
        qtrCtrl = G9HDL::QTRCTRL_3Q;
        nibCtrl = G9HDL::NIBCTRL_EVEN;
        break;
    case 24:
        qtrCtrl = G9HDL::QTRCTRL_4Q;
        nibCtrl = G9HDL::NIBCTRL_ODD;
        break;
    case 28:
        qtrCtrl = G9HDL::QTRCTRL_4Q;
        nibCtrl = G9HDL::NIBCTRL_EVEN;
        break;
    }

    controls.SetQtrctrl(qtrCtrl);
    controls.SetNibctrl(nibCtrl);
}

/// \brief Field encoder for dependency control check fields
inline void BinaryEncodingCNL::EncodeDepControl(G4_INST* inst,
                                                G9HDL::EU_INSTRUCTION_CONTROLS_A& controlsA)
{
    if ( inst->isNoDDChkInst() )
    {
        if ( inst->isNoDDClrInst() )
        {
            controlsA.SetDepctrl( G9HDL::DEPCTRL_NODDCLR_NODDCHK );
        }   else   {
            controlsA.SetDepctrl( G9HDL::DEPCTRL_NODDCHK );
        }
    }
    else    {
        if (inst->isNoDDClrInst())
        {
            controlsA.SetDepctrl( G9HDL::DEPCTRL_NODDCLR );
        }   else        {
            controlsA.SetDepctrl( G9HDL::DEPCTRL_NONE );
        }
    }
}

/// \brief Field encoder for thread control field. Includes some logic that is
//         dependant on the platform.
inline void BinaryEncodingCNL::EncodeThreadControl(G4_INST* inst,
                                                   G9HDL::EU_INSTRUCTION_CONTROLS_A& controlsA)
{
    if ( inst->opcode() == G4_if  ||
         inst->opcode() == G4_else  ||
         inst->opcode() == G4_endif )
    {

    }

    else
    {
        controlsA.SetThreadControl(
            inst->isAtomicInst()? G9HDL::THREADCTRL_ATOMIC :
            // CHAI: Add Switch InstOpt support
            ( inst->isYieldInst() ? G9HDL::THREADCTRL_SWITCH :
              ( inst->isNoPreemptInst() ? G9HDL::THREADCTRL_NOPREEMPT :
                G9HDL::THREADCTRL_NORMAL ) ) );
    }
}

/// \brief Field encoder for ACC write control field
void BinaryEncodingCNL::EncodeAccWrCtrl(G4_INST* inst,
                                        G9HDL::EU_INSTRUCTION_CONTROLS& instructionControls)
{
    if (inst->isAccWrCtrlInst() || (inst->isFlowControl() && inst->opcode() != G4_jmpi && inst->asCFInst()->isBackward()))
    {
        instructionControls.SetControlsB_Accwrctrl( G9HDL::ACCWRCTRL_UPDATE_ACC );
    }
}

//////////////////////////////////////////////////////////////////////////
//// Field encoder
void BinaryEncodingCNL::EncodeInstModifier(G4_INST* inst,
                                           G9HDL::EU_INSTRUCTION_CONTROLS& instructionControls)
{
    if (inst->getSaturate()) {
        instructionControls.SetControlsB_Saturate(G9HDL::SATURATE_SAT);
    } else {
        instructionControls.SetControlsB_Saturate( G9HDL::SATURATE_NO_DESTINATION_MODIFICATION );
    }
}

//////////////////////////////////////////////////////////////////////////
//// Field encoder
void BinaryEncodingCNL::EncodeFlagRegPredicate(
    G4_INST* inst,
    G9HDL::EU_INSTRUCTION_CONTROLS_A& instructionControlsA)
{
    G4_Predicate *pred = inst->getPredicate();
    if(pred)
    {
        switch(pred->getState())
        {
            // plus and undef are normal
        case PredState_Plus:
        case PredState_undef:
            instructionControlsA.SetPredinv(G9HDL::PREDINV_POSITIVE);
            //instructionHeader.SetControl_Predinv( G9HDL::PREDINV_POSITIVE );
            //flagState = PREDICATE_STATE_NORMAL;
            break;
            // minus is invert
        case PredState_Minus:
            instructionControlsA.SetPredinv(G9HDL::PREDINV_NEGATIVE);
            //instructionHeader.SetControl_Predinv( G9HDL::PREDINV_NEGATIVE );
            //flagState = PREDICATE_STATE_INVERT<<4;
            break;
        }

        G9HDL::PREDCTRL predCtrl = G9HDL::PREDCTRL_SEQUENTIAL_FLAG_CHANNEL_MAPPING;

        if (inst->isAligned16Inst())
        {
            switch( pred->getAlign16PredicateControl() )
            {
            case PRED_ALIGN16_DEFAULT:
                predCtrl = G9HDL::PREDCTRL_SEQUENTIAL_FLAG_CHANNEL_MAPPING;
                break;
            case PRED_ALIGN16_X:
                predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_X;
                break;
            case PRED_ALIGN16_Y:
                predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_Y;
                break;
            case PRED_ALIGN16_Z:
                predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_Z;
                break;
            case PRED_ALIGN16_W:
                predCtrl = G9HDL::PREDCTRL_REPLICATION_SWIZZLE_W;
                break;
            case PRED_ALIGN16_ANY4H:
                predCtrl = G9HDL::PREDCTRL_ANY4H;
                break;
            case PRED_ALIGN16_ALL4H:
                predCtrl = G9HDL::PREDCTRL_ALL4H;
                break;
            default:
                MUST_BE_TRUE(false, "invalid align16 predicate control");
            }
            instructionControlsA.SetPredctrl(predCtrl);
            //instructionHeader.SetControl_Predctrl( predCtrl );
        }
        else
        {
            auto pc = pred->getControl();
            if (pc != PRED_DEFAULT)
                predCtrl = (G9HDL::PREDCTRL)GetAlign1PredCtrl(pc);
            instructionControlsA.SetPredctrl( predCtrl );
        }
    }
}

static const unsigned CONDITION_MODIIFER[11] =
{
     (unsigned)G9HDL::CONDMODIFIER_Z,
     (unsigned)G9HDL::CONDMODIFIER_E,
     (unsigned)G9HDL::CONDMODIFIER_NZ,
     (unsigned)G9HDL::CONDMODIFIER_NE,
     (unsigned)G9HDL::CONDMODIFIER_G,
     (unsigned)G9HDL::CONDMODIFIER_GE,
     (unsigned)G9HDL::CONDMODIFIER_L,
     (unsigned)G9HDL::CONDMODIFIER_LE,
     (unsigned)G9HDL::CONDMODIFIER_O, // Mod_o
     (unsigned)G9HDL::CONDMODIFIER_O, // Mod_r
     (unsigned)G9HDL::CONDMODIFIER_U  // Mod_u
};
/// \brief Field encoder
///
void BinaryEncodingCNL::EncodeCondModifier(G4_INST* inst, G9HDL::EU_INSTRUCTION_CONTROLS& instructionControls)
{
    G4_CondMod *cModifier = inst->getCondMod();
    if(cModifier)    {
        G9HDL::CONDMODIFIER value;

        unsigned mod = (unsigned)cModifier->getMod();
        MUST_BE_TRUE(mod != (unsigned)Mod_r && mod < (unsigned)Mod_cond_undef,
            //case Mod_r:
            //    value = G9HDL::CONDMODIFIER_O; //7
            //    break;
                     "[Verifying]:[ERR]: Invalid conditional modifier:\t");
        value = (G9HDL::CONDMODIFIER)CONDITION_MODIIFER[mod];
        instructionControls.SetCondmodifier(value);
    }
}


/// \brief Encodes instruction header DWORD, common for all types of instructions
inline void BinaryEncodingCNL::EncodeInstHeader(G4_INST *inst,
                                                G9HDL::EU_INSTRUCTION_HEADER& header)
{
    G9HDL::EU_INSTRUCTION_CONTROLS& controls = header.GetControl();
    G9HDL::EU_INSTRUCTION_CONTROLS_A& controlsA = controls.GetControlsA();

    header.Init();
    EncodeOpCode(inst, header);
    EncodeExecSize(inst, controlsA);
    EncodeAccessMode(inst, controlsA);
    EncodeQtrControl(inst, controlsA);
    EncodeThreadControl(inst, controlsA);
    EncodeDepControl(inst, controlsA);
    EncodeFlagRegPredicate(inst, controlsA);
    EncodeAccWrCtrl(inst,controls);
    EncodeInstModifier(inst,controls);
    EncodeCondModifier(inst,controls);

    controls.SetControlsB_Cmptctrl(
        inst->isCompactedInst() ?
        G9HDL::CMPTCTRL_COMPACTED :G9HDL::CMPTCTRL_NOCOMPACTION );

    if( inst->isBreakPointInst() )
        controls.SetControlsB_Debugctrl( G9HDL::DEBUGCTRL_BREAKPOINT );

}

////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////
////////////////////////////// DST.OPERAND_CONTROLS ///////////////


//////////////////////////////////////////////////////////////////////////
//// Field encoder
inline void BinaryEncodingCNL::EncodeDstHorzStride(G4_INST *inst, G4_DstRegRegion *dst,
                                                   G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
    switch(dst->getHorzStride())
    {
    case 1:
        //NOTE: not sure if this is correct?
        if ( inst->isAligned16Inst())
        {
            //NOTE: use align1 union, even if setting align16 field. Masks are equal.
            //note: Although Dst.HorzStride is a don't care for Align16, HW needs this to be programmed as '01'.
            opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_4_ELEMENTS );
        } else {
            opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );
        }
        break;
    case 2:
        opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_2_ELEMENTS );
        break;
    case 4:
        opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_4_ELEMENTS );
        break;
    case UNDEFINED_SHORT:
        opnds.GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );
        break;
    default:  MUST_BE_TRUE(false, "wrong dst horizontal stride"); break;
    }
}

//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
void BinaryEncodingCNL::EncodeDstChanEn(G4_INST* inst,
                                        G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
    G4_DstRegRegion* dst = inst->getDst();

    if (dst->isAccRegValid())
    {
        //NOTE: this one is special case for instructions that use special accumulators
        opnds.GetDestinationRegisterRegion_Align16().SetDestinationChannelEnable(dst->getAccRegSel());
    } else {
        G4_DstRegRegion *dstRegion = static_cast<G4_DstRegRegion*>(dst);

		opnds.GetDestinationRegisterRegion_Align16().
			SetDestinationChannelEnable(dstRegion->getWriteMask());
    }
}

//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
//NOTE2: Encoding for ARF register type is moved into setting reg destination logic.
void BinaryEncodingCNL::EncodeDstRegFile(G4_INST* inst,
                                         G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
    G4_DstRegRegion* dst = inst->getDst();
    switch( EncodingHelper::GetDstRegFile(dst) )
    {   //Bug Line 846, bitrange: 3-4, should be: 35-36
    case REG_FILE_A:
        opnds.SetDestinationRegisterFile(G9HDL::REGFILE_ARF); break;
    case REG_FILE_R:
        opnds.SetDestinationRegisterFile(G9HDL::REGFILE_GRF); break;
    case REG_FILE_M:
        MUST_BE_TRUE( 0 ," Memory is invalid register file on CNL");
        //opnds.SetDestinationRegisterFile(G9HDL::REGFILE_IMM); break;
    default:
        break;
    }
}

//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
void BinaryEncodingCNL::EncodeDstRegNum(G4_INST* inst,
                                        G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
    G4_DstRegRegion* dst = inst->getDst();

    if ( EncodingHelper::GetDstRegFile(dst) != REG_FILE_A &&
         EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_IMMED )
    {
        uint32_t byteAddress = dst->getLinearizedStart();

        if( inst->isAligned1Inst() )
        {
            //register number: 256 bit (32 byte) aligned part of an address
            //sub-register number: 32 byte address (5 bits encoding) within a GRF
            // 98765 43210
            // regn |subre

            opnds.GetDestinationRegisterRegion_Align1().
                SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);
            if (dst->isAccRegValid() && kernel.fg.builder->encodeAccRegSelAsAlign1())
            {
                MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for dst with special accumulator");
                opnds.GetDestinationRegisterRegion_Align1().
                    SetDestinationSpecialAcc(dst->getAccRegSel());
            }
            else
            {
                opnds.GetDestinationRegisterRegion_Align1().
                    SetDestinationSubregisterNumber_DestinationSubRegisterNumber(byteAddress & 0x1F);
            }
        } else { //align 16
            //register number: 256 bit (32 byte) aligned part of an address
            //sub-register number: first/second 16 byte part of 32 byte address. Encoded with 1 bit.
            // 98765 43210
            // regn |x0000

            //opnds.GetDestinationRegisterRegion_Align1().
            //    SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);
            opnds.GetDestinationRegisterRegion_Align16().
                SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);

            //opnds.GetDestinationRegisterRegion_Align1().
            //    SetDestinationSubregisterNumber_DestinationSubRegisterNumber((byteAddress >> 4) & 0x1);
            opnds.GetDestinationRegisterRegion_Align16().
                SetDestinationSubregisterNumber((WORD)byteAddress);
        }
    }
}

//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
//
// SetDstArchRegNum (53:56) + SetDstArchRegFile (57:60)
// SetDstArchSubRegNumByte (48:52)
// essentially, this encoding is split in three parts:
// setting reg num : arch reg file + arch reg number
// setting sub-reg-num
// Here, we fuse two original methods into one: EncodeDstArchRegNum and EncodeDstRegFile for ARF
void BinaryEncodingCNL::EncodeDstArchRegNum(G4_INST* inst,
                                            G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
    G4_DstRegRegion* dst = inst->getDst();

    if ( EncodingHelper::GetDstRegFile(dst) == REG_FILE_A  &&
         EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_IMMED )
    {
        if ( EncodingHelper::GetDstArchRegType(dst) != ARCH_REG_FILE_NULL )
        {
            bool valid;

            unsigned short RegFile = (unsigned short) EncodingHelper::GetDstArchRegType(dst); //4 bits
            unsigned short RegNumValue = dst->ExRegNum(valid);

            // 7654|3210
            // RegF|RegNumVal
            unsigned short EncodedRegNum = RegFile << 4;
            EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);

            //the same as for align16
            opnds.GetDestinationRegisterRegion_Align1().SetDestinationRegisterNumber_DestinationRegisterNumber(EncodedRegNum);
            {
                bool subValid;
                unsigned short RegSubNumValue = dst->ExSubRegNum(subValid);
                unsigned short ElementSizeValue = EncodingHelper::GetElementSizeValue(dst);
                uint32_t regOffset = RegSubNumValue * ElementSizeValue;

                if (inst->isAligned1Inst())
                {
                    //sub-register number: 32 byte address (5 bits encoding) within a GRF
                    opnds.GetDestinationRegisterRegion_Align1().
                         SetDestinationSubregisterNumber_DestinationSubRegisterNumber((WORD)regOffset);
                } else { //align 16
                    //sub-register number: first/second 16 byte part of 32 byte address. Encoded with 1 bit.
                    // 9876543210
                    // regn|x0000
                    //opnds.GetDestinationRegisterRegion_Align16().SetDestinationSubregisterNumber((regOffset >> 4) & 0x1);
                    opnds.GetDestinationRegisterRegion_Align16().SetDestinationSubregisterNumber((WORD)regOffset);
                }
            }
        }
    }
}

//////////////////////////////////////////////////////////////////////////
//// Field encoder
//NOTE: could change interface, so that 'dst' is passed directly
void BinaryEncodingCNL::EncodeDstIndirectRegNum(G4_INST* inst,
                                                G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
    G4_DstRegRegion* dst = inst->getDst();

    if ( EncodingHelper::GetDstRegFile(dst)==REG_FILE_R ||
         EncodingHelper::GetDstRegFile(dst)==REG_FILE_M)
    {
        if ( EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_INDIR )
        { // Indirect
            bool subValid;
            unsigned short IndAddrRegSubNumValue = 0;
            short IndAddrImmedValue = 0;

            IndAddrRegSubNumValue = dst->ExIndSubRegNum(subValid);
            IndAddrImmedValue = dst->ExIndImmVal();

            //the same is for align16
            opnds.GetDestinationRegisterRegion_Align1().
                SetDestinationAddressSubregisterNumber_AddressSubregisterNumber(IndAddrRegSubNumValue);

            /* Set the indirect address immediate value. */
            if (inst->isAligned1Inst())
            {
                //bits [0-8]
                opnds.GetDestinationRegisterRegion_Align1().SetDestinationAddressImmediate(IndAddrImmedValue);
                //bit[9:9]
                opnds.SetDestinationAddressImmediate99( IndAddrImmedValue >> 9 );
            }  else  { //here we are setting align16
                //bits [4-8]
                opnds.GetDestinationRegisterRegion_Align16().
                    SetDestinationAddressImmediate84( (IndAddrImmedValue >> 4) & 0x1F );
                //bit[9:9], originally: (IndAddrImmedValue / BYTES_PER_OWORD)  >> 5
                opnds.SetDestinationAddressImmediate99( IndAddrImmedValue >> 9 );
            }
        }
    }
}

/// \brief Encodes instruction operand (1st DWORD) of instruction
///
/// src0 reg file and type are not encoded here, even though they belong to dword 1
inline void BinaryEncodingCNL::EncodeOperandDst(G4_INST* inst,
                                                G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS& opnds)
{
    G4_DstRegRegion* dst = inst->getDst();

	DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeFlagReg(inst, opnds);
	DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeMaskCtrl(inst, opnds);

	if ( dst == NULL )
	{
		return;
	}

    EncodeDstRegFile(inst,opnds);
    DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeOperandDstType(inst, opnds);

    if (inst->isAligned16Inst())
    {
        EncodeDstChanEn(inst,opnds);
    }
    // Note: dst doesn't have the vertical stride and width
    EncodeDstRegNum(inst, opnds);
    EncodeDstArchRegNum(inst, opnds);
    EncodeDstIndirectRegNum(inst, opnds);

    EncodeDstHorzStride(inst, dst, opnds);
    DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeDstAddrMode(inst, opnds);
}



//EU_INSTRUCTION_BASIC_ONE_SRC
//  ( EU_INSTRUCTION_SOURCES_REG
//      EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1
//          or
//      EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16 )
//    or
//  ( EU_INSTRUCTION_SOURCES_IMM32



inline void BinaryEncodingCNL::EncodeOneSrcInst(G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC& oneSrc)
{
    EncodeInstHeader(inst, oneSrc.Common.Header);
    EncodeOperandDst(inst, oneSrc.Common.OperandControls);
    G4_Operand *src0 = inst->getSrc(0);

    //EncodeSrc0RegFile
    oneSrc.GetOperandControls().SetSrc0Regfile( TranslateVisaToHDLRegFile(EncodingHelper::GetSrcRegFile(src0) ));

    //EncodeSrc0Type
    if (src0->isImm())
    {
        oneSrc.GetOperandControls().SetSrc0Srctype_Imm(GetOperandSrcHDLImmType(src0->getType()));
    }
    else
    {
        oneSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(src0->getType()));
    }

    if ( src0->isImm() )
    {
        //this should be compiled as dead code in non-debug mode
        if ( inst->opcode() != G4_mov                   &&
            G4_Type_Table[src0->getType()].byteSize == 8 )
        {
            MUST_BE_TRUE(false, "only Mov is allowed for 64bit immediate");
        }
        if ( G4_Type_Table[src0->getType()].byteSize == 8 ) {
            G9HDL::EU_INSTRUCTION_IMM64_SRC* ptr = (G9HDL::EU_INSTRUCTION_IMM64_SRC*) &oneSrc;
            EncodeSrcImm64Data(*ptr, src0);
        }
        else
        {
            //EncodeSrcImmData( oneSrc.GetImmsource(), src0 );
            SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_IMM32,0>::EncodeSrcImmData(
                oneSrc.GetImmsource(), src0 );
        }
    }
    else
    {
		SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG,0>::EncodeEuInstructionSourcesReg(
			inst, src0, oneSrc. GetRegsource() //by reference 
			);
    }

}

inline void BinaryEncodingCNL::EncodeTwoSrcInst(G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC& twoSrc)
{

    EncodeInstHeader(inst, twoSrc.Common.Header);
    EncodeOperandDst(inst, twoSrc.Common.OperandControls);
    G4_Operand *src0 = inst->getSrc(0);
    G4_Operand *src1 = inst->getSrc(1);

    //EncodeSrc0RegFile
    twoSrc.GetOperandControls().SetSrc0Regfile(TranslateVisaToHDLRegFile(EncodingHelper::GetSrcRegFile(src0)));

    bool src0ImmOk = inst->isMath() && inst->asMathInst()->isOneSrcMath();
    MUST_BE_TRUE(src0ImmOk || !src0->isImm(), "src0 is immediate in two src instruction!");
    //EncodeSrc0Type
    if (src0->isImm())
    {
        twoSrc.GetOperandControls().SetSrc0Srctype_Imm(GetOperandSrcHDLImmType(src0->getType()));
    }
    else
    {
        if (inst->isSend())
        {
            twoSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(Type_F));
        }
        else
        {
            twoSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(src0->getType()));
        }
    }

    if (src0->isImm())
    {
        MUST_BE_TRUE(G4_Type_Table[src0->getType()].byteSize < 8, "only Mov is allowed for 64bit immediate");
        //FIXME: feels like this should be 0 here, but it gives a type mismatch as the headers assume src0
        //must be REG
        SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_IMM, 1>::EncodeSrcImmData(
            twoSrc.GetImmsource(), src0);
    }
    else
    {
        SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG, 0>::EncodeEuInstructionSourcesReg(
            inst, src0, twoSrc.GetRegsource() //by reference
            );
    }

    //no need to encode one src math instruction
    if (inst->isMath() && src1->isNullReg() && !src0->isImm())
    {
        SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG, 1>::EncodeEuInstructionNullSourcesReg(inst, src1, twoSrc.GetRegsource());
        return;
    }

	twoSrc.GetRegsource().SetSrc1Regfile( TranslateVisaToHDLRegFile( EncodingHelper::GetSrcRegFile(src1) ) );
	if (src1->isImm())
	{
		twoSrc.GetImmsource().SetSrc1Srctype(GetOperandSrcHDLImmType(src1->getType()));
	}
    // adding to fix above no need to encode type if src0 is immediate and src1 is null reg
    else if (!(inst->isMath() && src1->isNullReg() && src0->isImm()))
	{
		twoSrc.GetRegsource().SetSrc1Srctype(GetOperandSrcHDLType(src1->getType()));
	}

	if ( src1->isImm() )
	{
		if ( inst->opcode() != G4_mov                   &&
			G4_Type_Table[src1->getType()].byteSize == 8 )
		{
			MUST_BE_TRUE(false, "only Mov is allowed for 64bit immediate");
		}

		SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_IMM,1>::EncodeSrcImmData(
			twoSrc.GetImmsource(), src1 );
	}
    else
    {
        if (src0->isImm())
        {
            // src1 must be null, and don't encode anything so it won't overwrite src0's imm value
            MUST_BE_TRUE(src1->isNullReg(), "src1 must be null ARF if src0 is immediate");
        }
        else
        {
            SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG, 1>::EncodeEuInstructionSourcesReg(
                inst, src1, twoSrc.GetRegsource() //by reference
                );
        }
	}

}

/// \brief Given a two-src mask, apply a patch for send instruction
///
void PatchSend( G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* twoSrc )
{
	uint32_t msgDesc = inst->getMsgDesc()->getExtendedDesc();
	EncExtMsgDescriptor emd;
	emd.ulData = msgDesc;

	G9HDL::EU_INSTRUCTION_SEND* sendInstruction = (G9HDL::EU_INSTRUCTION_SEND*) twoSrc;
	G9HDL::SFID sfid = (G9HDL::SFID) emd.ExtMsgDescriptor.TargetUnitId;

	sendInstruction->SetSharedFunctionIdSfid( sfid );
    sendInstruction->SetExdesc1111(msgDesc);

    //this is a hack, but:
    //fixme: this is missing in auto-header, currently need to override the acc write field
    if (inst->isNoSrcDepSet())
    {
        //equivalent to: mybin->SetBits(bitsNoSrcDepSet_0, bitsNoSrcDepSet_1, 1);
        sendInstruction->SetControlsB_Accwrctrl(G9HDL::ACCWRCTRL_UPDATE_ACC); //0x1
    }

	G9HDL::EOT eot = (G9HDL::EOT) emd.ExtMsgDescriptor.EndOfThread;
	sendInstruction->GetMessage().SetEot(eot);
}

/// \brief EncodeMathControl
///
void PatchMath( G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* twoSrc )
{
    MUST_BE_TRUE(inst->isMath(), "PatchMath must be called on math instruction.");

	unsigned int MathControlValue = inst->asMathInst()->getMathCtrl();
	unsigned MathFunction = MathControlValue & 0xf;

	G9HDL::EU_INSTRUCTION_MATH* mathInstruction = (G9HDL::EU_INSTRUCTION_MATH*) twoSrc;
	G9HDL::FC mathFunctionControl = (G9HDL::FC) MathFunction;
	mathInstruction->SetFunctionControlFc(mathFunctionControl);

	//fixme: what about partial precision bit?
	//if( !mybin->GetIs3Src() )     {
	//	mybin->SetBits(bitsMathFunction_0, bitsMathFunction_1, MathFunction);
	//	mybin->SetBits(bitsMathPartPrec_0, bitsMathPartPrec_1, MathPartPrec);
	//}
}


inline G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE Get3SrcLimitedType(G4_Type type)
{
	switch (type)
	{
	case Type_F:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_F;
	case Type_D:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_D;
	case Type_UD:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_UD;
	case Type_DF:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_DF;
	case Type_HF:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_HF;
	default:
		break;
	}
	//default
	return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::DESTINATION_DATA_TYPE_F;
}

inline static G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE Get3SrcLimitedSrcType(G4_Type type)
{
	switch (type)
	{
	case Type_F:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_F;
	case Type_D:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_D;
	case Type_UD:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_UD;
	case Type_DF:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_DF;
	case Type_HF:
		return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_HF;
	default:
		break;
	}
	//default
	return G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC::SOURCE_DATA_TYPE_F;
}

/// Gets align1 ternary instruction limited type, given execution type (integer/float)
inline static G9HDL::TERNARYALIGN1DATATYPE Get3SrcAlign1LimitedSrcType(
    G4_Type type,
    G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE isFloatExecutionType)
{
    if (isFloatExecutionType == G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE_FLOAT)
    {
        switch (type)
        {
        case Type_F:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_F;
        case Type_DF:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_DF;
        case Type_HF:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_HF;
        case Type_NF:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_NF;
        default:
            MUST_BE_TRUE(0, "wrong type for align1 ternary instruction with float execution type.");
            break;
        }

        //Some reasonable default:
        return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_F;
    }
    else
    {
        switch (type)
        {
        case Type_UD:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UD;
        case Type_D:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_D;
        case Type_UW:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UW;
        case Type_W:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_W;
        case Type_UB:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UB;
        case Type_B:
            return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_B;
        default:
            MUST_BE_TRUE(0, "wrong type for align1 ternary instruction with integer execution type.");
            break;
        }
        //Some reasonable default:
        return G9HDL::TERNARYALIGN1DATATYPE::TERNARYALIGN1DATATYPE_UD;
    }

}


inline void BinaryEncodingCNL::EncodeThreeSrcInst(G4_INST* inst, G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC& threeSrc)
{
	G4_Operand *src0 = inst->getSrc(0);
	G4_Operand *src1 = inst->getSrc(1);
	G4_Operand *src2 = inst->getSrc(2);
	G4_Operand *dst = inst->getDst();

    EncodeInstHeader(inst, threeSrc.Common.Header);

    //threeSrc doesn't have OperandControls field, need to implement its dst encoding separately

	DstBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC>::EncodeFlagReg(inst, threeSrc);
	DstBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC>::EncodeMaskCtrl(inst, threeSrc);
	{
		threeSrc.SetDestinationDataType(Get3SrcLimitedType(dst->getType()));
		threeSrc.SetSourceDataType(Get3SrcLimitedSrcType(src0->getType()));
		if (src1->getType() == Type_HF)
		{
			threeSrc.SetSource1Type(1);
		}
		if (src2->getType() == Type_HF)
		{
			threeSrc.SetSource2Type(1);
		}

		G4_DstRegRegion* dst = inst->getDst();

		//this is for 'special accumulators', encoded with channel enable..
		if (dst->isAccRegValid())
		{
            threeSrc.SetDestinationChannelEnable(dst->getAccRegSel());
			//NOTE: this one is special case for instructions that use special accumulators
		}
		else
		{
			G4_DstRegRegion *dstRegion = static_cast<G4_DstRegRegion*>(dst);
			threeSrc.SetDestinationChannelEnable(dstRegion->getWriteMask());
		}

		if ( EncodingHelper::GetDstRegFile(dst) != REG_FILE_A &&
			 EncodingHelper::GetDstAddrMode(dst) == ADDR_MODE_IMMED )
		{
			uint32_t byteAddress = dst->getLinearizedStart();

			threeSrc.SetDestinationRegisterNumber_DestinationRegisterNumber(byteAddress >> 5);
			//must be DWORD aligned
			//3 bits for subregnum
            threeSrc.SetDestinationSubregisterNumber((byteAddress >> 2) & 0x7);
			MUST_BE_TRUE(inst->isAligned16Inst(), "3src only support align16 mode");
		}

		//src0
		{
			//EncodeSrc0RepCtrl
			G4_SrcRegRegion* src0Region = src0->asSrcRegRegion();
			G4_SrcRegRegion* src1Region = src1->asSrcRegRegion();
			G4_SrcRegRegion* src2Region = src2->asSrcRegRegion();

			//char *swizzle = src0Region->getSwizzle();
			//if (swizzle[0] == 'r')
			//	threeSrc.SetSource0_SourceReplicateControl(G9HDL::REPCTRL_REPLICATE_ACROSS_ALL_CHANNELS);
			//else
			//	threeSrc.SetSource0_SourceReplicateControl(G9HDL::REPCTRL_NO_REPLICATION);

			//source modifiers:
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::EncodeSrcModifier( inst, src0, threeSrc );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::EncodeSrcModifier( inst, src1, threeSrc );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::EncodeSrcModifier( inst, src2, threeSrc );

            //rep control:
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::Encode3SrcReplicateControl( &threeSrc, src0Region );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::Encode3SrcReplicateControl( &threeSrc, src1Region );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::Encode3SrcReplicateControl( &threeSrc, src2Region );

            //chan select:
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::EncodeSrcChanSelect( &threeSrc, inst, src0, src0Region );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::EncodeSrcChanSelect( &threeSrc, inst, src1, src1Region );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::EncodeSrcChanSelect( &threeSrc, inst, src2, src2Region );

			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 0>::EncodeSrcRegNum3Src( inst, src0, threeSrc );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 1>::EncodeSrcRegNum3Src( inst, src1, threeSrc );
			SrcBuilder<G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC, 2>::EncodeSrcRegNum3Src( inst, src2, threeSrc );
		    //register
			//sub-register
		}
	}
}

inline void BinaryEncodingCNL::EncodeThreeSrcInstAlign1(G4_INST* inst, G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC& threeSrc)
{
    G4_Operand* src0 = inst->getSrc(0);
    G4_Operand* src1 = inst->getSrc(1);
    G4_Operand* src2 = inst->getSrc(2);
    G4_DstRegRegion* dst  = inst->getDst();

    //Common instruction fields:
    EncodeInstHeader(inst, threeSrc.TheStructure.Common.Header);
    DstBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC>::EncodeFlagReg(inst, threeSrc);
    DstBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC>::EncodeMaskCtrl(inst, threeSrc);

    MUST_BE_TRUE((IS_TYPE_FLOAT_ALL(src0->getType()) &&
                 IS_TYPE_FLOAT_ALL(src1->getType())  &&
                 IS_TYPE_FLOAT_ALL(src2->getType())  &&
                 IS_TYPE_FLOAT_ALL(dst->getType()))
                 ||
                 (IS_TYPE_INT(src0->getType()) &&
                  IS_TYPE_INT(src1->getType()) &&
                  IS_TYPE_INT(src2->getType()) &&
                  IS_TYPE_INT(dst->getType())), "No mixed mode in align1 ternary encoding.");

    G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE execType =
        IS_TYPE_FLOAT_ALL(dst->getType()) ?
        G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE_FLOAT :
        G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::EXECUTION_DATATYPE_INTEGER;

    threeSrc.SetExecutionDatatype(execType);

    //DST REGFILE
    switch (EncodingHelper::GetDstRegFile(dst))
    {
    case REG_FILE_R:
        threeSrc.SetDestinationRegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_REGISTER_FILE_GRF);
        break;
    case REG_FILE_A:
        threeSrc.SetDestinationRegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_REGISTER_FILE_ARF);
        break;
    default:
        MUST_BE_TRUE(0, "Invalid dst register file for for align1 ternary instruction (expected grf or arf).");
        break;
    }

    //SRC modifiers:
    if (src0->isSrcRegRegion())
    {
        threeSrc.SetSource0Modifier(BinaryEncodingCNL::GetSrcHLDMod(src0->asSrcRegRegion()));
    }
    else
    {
        threeSrc.SetSource0Modifier(G9HDL::SRCMOD_NO_MODIFICATION);
    }

    if (src1->isSrcRegRegion())
    {
        threeSrc.SetSource1Modifier(BinaryEncodingCNL::GetSrcHLDMod(src1->asSrcRegRegion()));
    }
    else
    {
        threeSrc.SetSource1Modifier(G9HDL::SRCMOD_NO_MODIFICATION);
    }
    if (src2->isSrcRegRegion())
    {
        threeSrc.SetSource2Modifier(BinaryEncodingCNL::GetSrcHLDMod(src2->asSrcRegRegion()));
    }
    else
    {
        threeSrc.SetSource2Modifier(G9HDL::SRCMOD_NO_MODIFICATION);
    }

    //SRC0 regfile
    switch (EncodingHelper::GetSrcRegFile(src0))
    {
    case REG_FILE_R:
        threeSrc.SetSource0RegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_0_REGISTER_FILE_GRF);
        break;
    case REG_FILE_I:
        threeSrc.SetSource0RegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_0_REGISTER_FILE_IMM);
        break;
    case REG_FILE_A:
        MUST_BE_TRUE(src0->getType() == Type_NF, "Invalid register file for src0 in align1 ternary instruction (expected grf or imm).");
        threeSrc.SetSource0RegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_0_REGISTER_FILE_ARF);
        break;
    default:
        break;
    }

    //SRC1 regfile
    switch (EncodingHelper::GetSrcRegFile(src1))
    {
    case REG_FILE_R:
        threeSrc.SetSource1RegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_1_REGISTER_FILE_GRF);
        break;
    case REG_FILE_A:
        threeSrc.SetSource1RegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_1_REGISTER_FILE_ARF);
        break;
    default:
        MUST_BE_TRUE(0, "Invalid register file for src1 in align1 ternary instruction(expected grf or arf).");
        break;
    }

    //SRC2 regfile
    switch (EncodingHelper::GetSrcRegFile(src2))
    {
    case REG_FILE_R:
        threeSrc.SetSource2RegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_2_REGISTER_FILE_GRF);
        break;
    case REG_FILE_I:
        threeSrc.SetSource2RegisterFile(
            G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::SOURCE_2_REGISTER_FILE_IMM);
        break;
    default:
        MUST_BE_TRUE(0, "Invalid register file for src2 in align1 ternary instruction(expected grf or imm).");
        break;
    }

    threeSrc.SetDestinationDatatype(Get3SrcAlign1LimitedSrcType(dst->getType(), execType));

    // Dst reg/subreg
    switch (EncodingHelper::GetDstRegFile(dst))
    {
    case REG_FILE_R:
    {
        uint32_t byteAddress = dst->getLinearizedStart();
        if (kernel.fg.builder->encodeAccRegSelAsAlign1() && dst->isAccRegValid())
        {
            // special accumulator region (acc2-acc9) is encoded as part of subreg
            MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for dst with special accumulator");
            threeSrc.SetDestinationSpecialAcc(dst->getAccRegSel());
        }
        else
        {
            threeSrc.SetDestinationSubregisterNumber(byteAddress & 0x1f);
        }
        threeSrc.SetDestinationRegisterNumber(byteAddress >> 5);
        break;
    }
    case REG_FILE_A:
    {
        bool valid;
        unsigned short RegFile = (unsigned short)EncodingHelper::GetDstArchRegType(dst); //4 bits
        unsigned short RegNumValue = dst->ExRegNum(valid);

        // 7654|3210
        // RegF|RegNumVal
        unsigned short EncodedRegNum = RegFile << 4;
        EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
        threeSrc.SetDestinationRegisterNumber(EncodedRegNum);
        break;
    }
    default:
        MUST_BE_TRUE(0, "Invalid register file for dst in align1 ternary instruction(expected grf or acc).");
        break;
    }


    switch (dst->getHorzStride())
    {
    case 1:
        threeSrc.SetDestinationHorizontalStride(G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_HORIZONTAL_STRIDE_1_ELEMENT);
        break;
    case 2:
        threeSrc.SetDestinationHorizontalStride(G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_HORIZONTAL_STRIDE_2_ELEMENT);
        break;
    case UNDEFINED_SHORT:
        MUST_BE_TRUE(false, "Dst horizontal stride for align1 ternary instruction is undefined.");
        threeSrc.SetDestinationHorizontalStride(G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC::DESTINATION_HORIZONTAL_STRIDE_1_ELEMENT);
        break;
    default:
        MUST_BE_TRUE(false, "Wrong dst horizontal stride for align1 ternary instruction (is neither 1 nor 2).");
        break;
    }


    //SRC0 fields
    //////////////////////////////////////////////////////////////////////////
    //////////////////////////////////////////////////////////////////////////
    threeSrc.SetSource0Datatype(Get3SrcAlign1LimitedSrcType(src0->getType(), execType));

    if (src0->isSrcRegRegion())
    {
        RegionDesc *regdesc0 = src0->asSrcRegRegion()->getRegion();
        MUST_BE_TRUE(regdesc0, "Align1 ternary encoder: src0 region desc for ternary instruction is null!");

        //look for <N;N,1> contiguous region
        if (regdesc0->vertStride > 8)
        {
            //TODO: should we care about this case?
            MUST_BE_TRUE(0, "Align1 3 src instruction with vertStride>8 not supported yet.");
        }
        else
        {
            //src0: vstride
            switch (regdesc0->vertStride)
            {
            case 0:
                SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
                    SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_0_ELEMENTS);
                break;
            case 2:
                SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
                    SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_2_ELEMENTS);
                break;
            case 4:
                SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
                    SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_4_ELEMENTS);
                break;
            case 8:
                SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::
                    SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_8_ELEMENTS);
                break;
            default:
                MUST_BE_TRUE(false, "wrong vertical stride for ternary align1 instruction at src0!");
                break;
            }

            //src0: hstride
            SrcBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 0>::EncodeSrcHorzStride(
                inst,
                &threeSrc,
                regdesc0,
                src0);
        }

        MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src0) != REG_FILE_I, "Align1 ternary: src0 register file must not be immediate if src region is present. ");
        if (EncodingHelper::GetSrcRegFile(src0) != REG_FILE_A)
        {
            uint32_t byteAddress = src0->getLinearizedStart();
            threeSrc.SetSource0RegisterNumber_SourceRegisterNumber(byteAddress >> 5);
            if (kernel.fg.builder->encodeAccRegSelAsAlign1() && src0->isAccRegValid())
            {
                MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for source with special accumualators");
                threeSrc.SetSource0SpecialAcc(src0->getAccRegSel());
            }
            else
            {
                threeSrc.SetSource0SubregisterNumber_SourceSubRegisterNumber(byteAddress & 0x1f);
            }
        }
        else
        {
            MUST_BE_TRUE(src0->getType() == Type_NF, "only NF type src0 can be accumulator");
            //encode acc
            bool valid;
            unsigned short RegFile = (unsigned short)EncodingHelper::GetSrcArchRegType(src0); //4 bits
            unsigned short RegNumValue = src0->asSrcRegRegion()->ExRegNum(valid);

            // 7654|3210
            // RegF|RegNumVal
            unsigned short EncodedRegNum = RegFile << 4;
            EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
            threeSrc.SetSource0RegisterNumber_SourceRegisterNumber(EncodedRegNum);
        }
    }
    else
    {
        MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src0) == REG_FILE_I,
                     "Align1 ternary: src0 reg file must be immediate if operand is immediate.");

        G4_Imm *isrc = (G4_Imm *)src0->asImm();
        threeSrc.SetSource0ImmediateValue((uint32_t)isrc->getImm());
    }

    //SRC1 fields
    //////////////////////////////////////////////////////////////////////////
    //////////////////////////////////////////////////////////////////////////
    threeSrc.SetSource1Datatype(Get3SrcAlign1LimitedSrcType(src1->getType(), execType));

    MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src1) != REG_FILE_I,
                 "Align1 ternary:src1 immediate register file not supported by definition.");
    if (EncodingHelper::GetSrcRegFile(src1) != REG_FILE_A)
    {
        uint32_t byteAddress = src1->getLinearizedStart();
        threeSrc.SetSource1RegisterNumber_SourceRegisterNumber(byteAddress >> 5);
        if (kernel.fg.builder->encodeAccRegSelAsAlign1() && src1->isAccRegValid())
        {
            MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for source with special accumualators");
            threeSrc.SetSource1SpecialAcc(src1->getAccRegSel());
        }
        else
        {
            threeSrc.SetSource1SubregisterNumber_SourceSubRegisterNumber(byteAddress & 0x1f);
        }
    }
    else
    {
        //encode acc
        bool valid;
        unsigned short RegFile = (unsigned short)EncodingHelper::GetSrcArchRegType(src1); //4 bits
        unsigned short RegNumValue = src1->asSrcRegRegion()->ExRegNum(valid);

        // 7654|3210
        // RegF|RegNumVal
        unsigned short EncodedRegNum = RegFile << 4;
        EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
        threeSrc.SetSource1RegisterNumber_SourceRegisterNumber(EncodedRegNum);
    }

    RegionDesc *regdesc1 = src1->asSrcRegRegion()->getRegion();
    MUST_BE_TRUE(regdesc1,
      "Align1 ternary encoder: src1 region desc for ternary instruction is null!");

	//look for <N;N,1> contiguous region
	if (regdesc1->vertStride > 8)
	{
		//TODO: should we care about this case?
		MUST_BE_TRUE(0, "align1 3 src instruction with vertStride>8 not supported yet.");
	}
	else
	{
		SrcBuilder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::EncodeSrcHorzStride(
			inst,
			&threeSrc,
			regdesc1,
			src1);

		//src1: vstride
		switch (regdesc1->vertStride)
		{
		case 0:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
				SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_0_ELEMENTS);
			break;
		case 2:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
				SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_2_ELEMENTS);
			break;
		case 4:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
				SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_4_ELEMENTS);
			break;
		case 8:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 1>::
				SetSourceVerticalStride(&threeSrc, G9HDL::TERNARYALIGN1VERTSTRIDE_8_ELEMENTS);
			break;
		default:
			MUST_BE_TRUE(false, "wrong vertical stride for ternary align1 instruction at src0!");
			break;
		}
	}

    //SRC2 fields
    //////////////////////////////////////////////////////////////////////////
    //////////////////////////////////////////////////////////////////////////
    threeSrc.SetSource2Datatype(Get3SrcAlign1LimitedSrcType(src2->getType(), execType));

    if (src2->isSrcRegRegion())
    {
        RegionDesc *regdesc2 = src2->asSrcRegRegion()->getRegion();
        MUST_BE_TRUE(regdesc2,
         "Align1 ternary instruction: src2 region desc for instruction is null!");
        MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src2) != REG_FILE_I,
         "Align1 ternary encoder: src2 reg file is immediate even if src region present.");

        //src2 reg/subreg

        if (EncodingHelper::GetSrcRegFile(src2) != REG_FILE_A)
        {
            uint32_t byteAddress = src2->getLinearizedStart();
            threeSrc.SetSource2RegisterNumber_SourceRegisterNumber(byteAddress >> 5);
            if (kernel.fg.builder->encodeAccRegSelAsAlign1() && src2->isAccRegValid())
            {
                MUST_BE_TRUE((byteAddress & 0x1F) == 0, "subreg must be 0 for source with special accumualators");
                threeSrc.SetSource2SpecialAcc(src2->getAccRegSel());
            }
            else
            {
                threeSrc.SetSource2SubregisterNumber_SourceSubRegisterNumber(byteAddress & 0x1f);
            }
        }

		switch (regdesc2->horzStride)
		{
		case 0:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
				SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_0_ELEMENTS);
			break;
		case 1:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
				SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_1_ELEMENTS);
			break;
		case 2:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
				SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_2_ELEMENTS);
			break;
		case 4:
			SrcOperandEncoder<G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC, 2>::
				SetSourceHorizontalStride(&threeSrc, G9HDL::HORZSTRIDE_4_ELEMENTS);
			break;
		default:
			MUST_BE_TRUE(false, "Align1 ternary: src2 has non-encodable horizontal stride (accepted: 0,1,2,4).");
			break;
		}
    }
    else
    {
        MUST_BE_TRUE(EncodingHelper::GetSrcRegFile(src2) == REG_FILE_I,
         "Align1 ternary: src2 reg file must be immediate if operand is immediate.");

        G4_Imm *isrc = (G4_Imm *)src2->asImm();
        threeSrc.SetSource2ImmediateValue((uint32_t)isrc->getImm());
    }
}

/// \brief Get compaction control bit from already encoded binary instruction
///
uint32_t BinaryEncodingCNL::GetCompactCtrl(BinInst *mybin)
{
    G9HDL::EU_INSTRUCTION_HEADER* ptr =  (G9HDL::EU_INSTRUCTION_HEADER*) &(mybin->DWords);
    return (uint32_t) ptr->GetControl().GetControlsB_Cmptctrl();
}

/// \brief Set compaction control bit. TODO: how to write to mybin->DWords. below doesn't work
///
void BinaryEncodingCNL::SetCompactCtrl (BinInst *mybin, uint32_t value)
{
    G9HDL::EU_INSTRUCTION_HEADER* ptr =  (G9HDL::EU_INSTRUCTION_HEADER*) &(mybin->DWords);
    ptr->GetControl().SetControlsB_Cmptctrl(G9HDL::CMPTCTRL_COMPACTED);
}

/// \brief Encode JIP and(or) UIP at their respective places
///
///Comments are left from original binary encoder
///TODO: move as a class method
void BinaryEncodingCNL::SetBranchOffsets(G4_INST* inst,
							             uint32_t JIP,
							             uint32_t UIP)
{
	BinInst *mybin = inst->getBinInst();
	G4_opcode opc = inst->opcode();

	{
		if( opc == G4_if            ||
			opc == G4_break         ||
			opc == G4_cont          ||
			opc == G4_halt          ||
			opc == G4_goto          ||
			opc == G4_else  )
		{
            //cast binary as branch two src
            //note: if an instruction has both JIP and UIP, then
            //only src0 type and regfile are being set (higher dword is occupied)

			G9HDL::EU_INSTRUCTION_BRANCH_TWO_SRC* twoSrc =
				(G9HDL::EU_INSTRUCTION_BRANCH_TWO_SRC*) mybin->DWords;

			twoSrc->GetOperandControl().SetSrc0Regfile(G9HDL::REGFILE_IMM);
            twoSrc->GetOperandControl().SetSrc0Srctype_Imm(GetOperandSrcHDLImmType(Type_D));
			twoSrc->SetJip(JIP);
			twoSrc->SetUip(UIP);
			//SetBranchJIPUIP( mybin, JIP, UIP );
		}
		else
		{
			G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
				(G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;

			oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
            oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
			oneSrc->SetJip(JIP);
			//SetBranchJIP( mybin, JIP );
		}
	}
}

/// \brief encodes JIP and(or) UIP offsets
///
/// This is done in this separate method, and not during the main
/// encoding phase, since the real jump offsets are visible only
/// now.
bool BinaryEncodingCNL::EncodeConditionalBranches(G4_INST *inst,
												  uint32_t insOffset)
{
	std::string jipLabel;
	std::string uipLabel;
	int32_t jipOffset = 0;
	int32_t uipOffset = 0;
	G4_opcode op = inst->opcode();

	// while and case only have JIP for all platforms
	// break, cont and halt have both JIP and UIP for all platforms
	if ( op == G4_if    ||
         op == G4_else  ||
         op == G4_endif ||
		 op == G4_while ||
		 op == G4_break ||
		 op == G4_cont  ||
		 op == G4_halt ||
		 op == G4_goto ||
		 op == G4_join )
	{
        G4_Operand *jip = inst->asCFInst()->getJip();
		if (jip && jip->isLabel())
		{
            jipLabel = inst->asCFInst()->getJipLabelStr();
            int32_t info = GetLabelInfo(this->LabelMap, jipLabel);
            if (info == -1)
            {
                return false;
            }
			jipOffset = info - insOffset;
            jipOffset *= (int32_t)JUMP_INST_COUNT_SIZE;
		}
        else if (op == G4_while ||
                 op == G4_endif ||
                 op == G4_join)
        {
            {
                BinInst *mybin = inst->getBinInst();
                G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
                    (G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;

                oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
                oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
            }
        }
	}

	// halt has both JIP and UIP on all platforms
	// else has JIP for all platforms; else has UIP for BDW only
	if (op == G4_break                 ||
		op == G4_cont                  ||
		op == G4_halt                  ||
		op == G4_if                    ||
		op == G4_else                  ||
		op == G4_goto )
	{
		G4_Operand *uip = inst->asCFInst()->getUip();
		if ( uip && uip->isLabel() )
		{
            uipLabel = inst->asCFInst()->getUipLabelStr();
            int32_t info = GetLabelInfo(this->LabelMap, uipLabel);
            if (info == -1)
            {
                return false;
            }
			uipOffset = info - insOffset;
            uipOffset *= (uint32_t)JUMP_INST_COUNT_SIZE;
		}
	}

	if ( op == G4_endif && jipOffset == 0 )
	{
		jipOffset = INST_SIZE;
	}

	if ( jipOffset != 0 || uipOffset != 0 )
	{
		SetBranchOffsets(inst, jipOffset, uipOffset);
	}

    if ( op == G4_jmpi &&
        inst->getSrc(0) &&
        inst->getSrc(0)->isLabel() )
    {
        // find the label's IP count
        G4_Operand *opnd = inst->getSrc(0);
1758
        std::string jmpLabel = opnd->asLabel()->getLabel();
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        BinInst * mybin = inst->getBinInst();
        // Calculate the address offset
        // Label has the same IP count as the following instruction,
        // "break 1" is to the fall through instruction
        int32_t info = GetLabelInfo(this->LabelMap, jmpLabel);
        if (info == -1)
        {
            return false;
        }
        int32_t jmpOffset = info - insOffset;
        if ( GetCompactCtrl(mybin) )
            jmpOffset -= 1;
        else
            jmpOffset -= 2;

        jmpOffset *= (int32_t)JUMP_INST_COUNT_SIZE;

        //FIXME: add compaction support
        //if ( GetCompactCtrl(mybin) )
        //{
        //	SetCmpSrc1RegNum(mybin, jmpOffset & 0xff);          // 63:56
        //	SetCmpSrc1Index(mybin, (jmpOffset >> 8)& 0x1f);
        //}
        //else
        {
            BinInst *mybin = inst->getBinInst();
            G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
                (G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;

            oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
            oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
            oneSrc->SetJip((uint32_t)jmpOffset);
        }
    }

    if ( op == G4_call              &&
         inst->getSrc(0)            &&
         inst->getSrc(0)->isLabel() )
    {
        G4_Operand *opnd = inst->getSrc(0);
1799
        std::string jmpLabel = opnd->asLabel()->getLabel();
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
        int32_t info = GetLabelInfo(this->LabelMap, jmpLabel);
        if (info == -1)
        {
            return false;
        }

        int32_t jmpOffset = info - insOffset;

        {
            jmpOffset *= (int32_t)JUMP_INST_COUNT_SIZE;
        }

        BinInst *mybin = inst->getBinInst();
        G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC* oneSrc =
            (G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC*) mybin->DWords;

        oneSrc->SetSource0_SourceVerticalStride(G9HDL::VERTSTRIDE_2_ELEMENTS);
        oneSrc->SetSource0_SourceWidth(G9HDL::WIDTH_4_ELEMENTS);
        oneSrc->SetSource0_SourceHorizontalStride(G9HDL::HORZSTRIDE_1_ELEMENTS);

        oneSrc->SetSrc1Regfile(G9HDL::REGFILE_IMM);
        oneSrc->SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
        oneSrc->SetJip((uint32_t)jmpOffset);

        //TODO: do not forget about compacted variant
    }
    return true;
}

/// \brief initializes auto-header generated structure for split send instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::EncodeSplitSend( G4_INST* inst, G9HDL::EU_INSTRUCTION_SENDS& sends)
{
    Status myStatus = SUCCESS;

	G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* twoSrcMirror
		= (G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC*) &sends;

	EncodeInstHeader(inst, twoSrcMirror->Common.Header);

	//encode dst part
	//trimmed down EncodeOperandDst
	{
		DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeFlagReg(inst, sends);
		DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeMaskCtrl(inst, sends);
		DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeOperandDstType(inst, sends);
		DstBuilder<G9HDL::EU_INSTRUCTION_SENDS>::EncodeDstAddrMode(inst, sends);

		G4_DstRegRegion* dst = inst->getDst();

		//encode dst reg file
		//note: for sends, we have only one bit available for dst reg file
		{
			switch( EncodingHelper::GetDstRegFile(dst) )
			{
			case REG_FILE_R:
				sends.SetDestinationRegisterFile(G9HDL::REGFILE_GRF); break;
			case REG_FILE_A:
				sends.SetDestinationRegisterFile(G9HDL::REGFILE_ARF); break;
			default:
				MUST_BE_TRUE( 0 ," Invalid register file for split-send.");
				break;
			}
		}

		if (EncodingHelper::GetDstAddrMode(dst)==ADDR_MODE_INDIR)
		{
			// addr subregister
			// addr immediate
			bool subValid;
			uint16_t IndAddrRegSubNumValue = dst->ExIndSubRegNum(subValid);
			int16_t IndAddrImmedValue = dst->ExIndImmVal();

			sends.SetDestinationAddressSubregisterNumber(IndAddrRegSubNumValue);
			sends.SetDestinationAddressImmediate84((IndAddrImmedValue >> 4) & 0x1F);
			sends.SetDestinationAddressImmediateSign9((IndAddrImmedValue >> 9) & 0x1);
		}
		else
		{
			if (EncodingHelper::GetDstRegFile(dst) != REG_FILE_A )
			{
				uint32_t byteAddress = dst->getLinearizedStart();
				MUST_BE_TRUE( byteAddress % 16 == 0, "dst for sends/sendsc must be oword-aligned");

				sends.SetDestinationRegisterNumber(byteAddress >> 5);
				sends.SetDestinationSubregisterNumber4((byteAddress >> 4) & 0x1);
			}
		}

	}

	//encode src1
	{
		G4_Operand *src1 = inst->getSrc(1);

		//src1 reg file - 1 bit
		switch( EncodingHelper::GetSrcRegFile(src1) )
		{
		case REG_FILE_R:
			sends.SetSrc1Regfile(G9HDL::REGFILE_GRF); break;
		case REG_FILE_A:
			sends.SetSrc1Regfile(G9HDL::REGFILE_ARF); break;
		default:
			MUST_BE_TRUE( 0 ," Invalid register file for split-send.");
			break;
		}

        G4_SrcRegRegion* src1Region = src1->asSrcRegRegion();

		SrcBuilder<G9HDL::EU_INSTRUCTION_SENDS, 1>::EncodeSrcAddrMode(&sends, inst, src1);
		if (EncodingHelper::GetSrcAddrMode(src1)==ADDR_MODE_INDIR)
		{
			bool subValid;
			uint16_t IndAddrRegSubNumValue = src1Region->ExIndSubRegNum(subValid);
			int16_t IndAddrImmedValue = src1Region->ExIndImmVal();

			sends.SetSource1_SourceAddressImmediate84((IndAddrImmedValue >> 4) & 0x1F);
			sends.SetSource1_SourceAddressImmediateSign9((IndAddrImmedValue >> 9) & 0x1);
			sends.SetSource1_SourceAddressSubregisterNumber_0(IndAddrRegSubNumValue);
		}
		else
		{
			uint32_t byteAddress = src1->getLinearizedStart();
			MUST_BE_TRUE( byteAddress % 32 == 0, "src1 for sends/sendsc must be GRF-aligned");
			sends.SetSource1_SourceRegisterNumber(byteAddress >> 5);
			//mybin->SetBits(bitsSendsSrc1RegNum_0, bitsSendsSrc1RegNum_1, byteAddress >> 5);

		}
	}

	//encode src0
	{
		G4_SrcRegRegion *src0 = inst->getSrc(0)->asSrcRegRegion();
		//note: no regfile for src0

		SrcBuilder<G9HDL::EU_INSTRUCTION_SENDS, 0>::EncodeSrcAddrMode(&sends, inst, src0);

		if (EncodingHelper::GetSrcAddrMode(src0)==ADDR_MODE_INDIR)
		{
			bool subValid;
			uint16_t IndAddrRegSubNumValue = src0->ExIndSubRegNum(subValid);
			int16_t IndAddrImmedValue = src0->ExIndImmVal();

			sends.SetSource0_SourceAddressImmediate84((IndAddrImmedValue >> 4) & 0x1F);
			sends.SetSource0_SourceAddressImmediateSign9((IndAddrImmedValue >> 9) & 0x1);
			sends.SetSource0_SourceAddressSubregisterNumber(IndAddrRegSubNumValue);
		}
		else
		{
			uint32_t byteAddress = src0->getLinearizedStart();
			MUST_BE_TRUE( byteAddress % 32 == 0, "src1 for sends/sendsc must be GRF-aligned");
			sends.SetSource0_SourceRegisterNumber(byteAddress >> 5);
			//mybin->SetBits(bitsSendsSrc1RegNum_0, bitsSendsSrc1RegNum_1, byteAddress >> 5);

		}
	}

	//encode src2
	{
		G4_Operand *src2 = inst->getSrc(2);
        if (src2 == NULL)
        {
            return FAILURE;
        }

		if (src2->isImm())
		{
			sends.SetSelreg32desc(0);
			sends.GetMessage().GetDWORD(0) = (uint32_t) src2->asImm()->getInt();
		}
		else if (src2->isSrcRegRegion() && src2->asSrcRegRegion()->isA0() )
		{
			sends.SetSelreg32desc(1);
		}
	}

	//Patch SFID and EOT
	{
		uint32_t msgDesc = inst->getMsgDesc()->getExtendedDesc();
		EncExtMsgDescriptor emd;
		emd.ulData = msgDesc;

		G9HDL::SFID sfid = (G9HDL::SFID) emd.ExtMsgDescriptor.TargetUnitId;
		sends.SetSharedFunctionIdSfid( sfid );

		G9HDL::EOT eot = (G9HDL::EOT) emd.ExtMsgDescriptor.EndOfThread;
		sends.GetMessage().SetEot(eot);

		// additional extended msg desc to be encoded
		sends.SetExdesc96(msgDesc);
		sends.SetExdesc3116(msgDesc);
        sends.SetExdesc1111(msgDesc);

        // encoding for src3 A0 is done in DoAllEncodingSplitSEND later on
	}

    //this is a hack, but:
    //fixme: this is missing in auto-header, currently need to override the acc write field
    if (inst->isNoSrcDepSet())
    {
        //equivalent to: mybin->SetBits(bitsNoSrcDepSet_0, bitsNoSrcDepSet_1, 1);
        sends.SetControlsB_Accwrctrl(G9HDL::ACCWRCTRL_UPDATE_ACC); //0x1
    }

    return myStatus;
}

/// \brief Do customized encoding of WAIT instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingWAIT(G4_INST* inst)
{
    Status myStatus = SUCCESS;

    G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC oneSrc;

    oneSrc.Init();

    EncodeInstHeader(inst, oneSrc.Common.Header );
    EncodeOperandDst(inst, oneSrc.Common.OperandControls);
    G4_Operand *src0 = inst->getSrc(0);

    //EncodeSrc0RegFile
    oneSrc.GetOperandControls().SetSrc0Regfile( TranslateVisaToHDLRegFile(EncodingHelper::GetSrcRegFile(src0) ));

    //EncodeSrc0Type
    MUST_BE_TRUE( !src0->isImm(), "src0 must not be immediate in WAIT instruction!" );
    {
        oneSrc.GetOperandControls().SetSrc0Srctype(GetOperandSrcHDLType(src0->getType()));
    }

    SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG,0>::EncodeEuInstructionSourcesReg(
        inst, src0, oneSrc. GetRegsource() //by reference
        );

    //Dst patching:

    RegFile regFile = EncodingHelper::GetSrcRegFile(src0);
    MUST_BE_TRUE( regFile == REG_FILE_A, "WAIT instruction source has reg file different than ARF!" );
    oneSrc.Common.OperandControls.SetDestinationRegisterFile(
        TranslateVisaToHDLRegFile(regFile ) );

    if (regFile == REG_FILE_A)
    {
        bool valid;
        G4_SrcRegRegion* src0Region = src0->asSrcRegRegion();
        unsigned short RegFile = (unsigned short)EncodingHelper::GetSrcArchRegType(src0); //4 bits
        unsigned short RegNumValue = src0Region->ExRegNum(valid);
        unsigned short EncodedRegNum = PackArchRegTypeAndArchRegFile( RegFile, RegNumValue );

        oneSrc.Common.OperandControls.GetDestinationRegisterRegion_Align1().
            SetDestinationRegisterNumber_DestinationRegisterNumber(EncodedRegNum);

        {
            bool subValid;
            unsigned short RegSubNumValue = src0Region->ExSubRegNum(subValid);
            unsigned short ElementSizeValue = EncodingHelper::GetElementSizeValue(src0);
            uint32_t regOffset = RegSubNumValue * ElementSizeValue;

            if (inst->isAligned1Inst())
            {
                //sub-register number: 32 byte address (5 bits encoding) within a GRF
                oneSrc.Common.OperandControls.GetDestinationRegisterRegion_Align1().
                    SetDestinationSubregisterNumber_DestinationSubRegisterNumber((WORD)regOffset);
            } else { //align 16
                //sub-register number: first/second 16 byte part of 32 byte address. Encoded with 1 bit.
                // 9876543210
                // regn|x0000
                //opnds.GetDestinationRegisterRegion_Align16().SetDestinationSubregisterNumber((regOffset >> 4) & 0x1);
                oneSrc.Common.OperandControls.GetDestinationRegisterRegion_Align16().
                    SetDestinationSubregisterNumber((WORD)regOffset);
            }
        }

    }


    oneSrc.Common.OperandControls.
        GetDestinationRegisterRegion_Align1().
        SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );

    oneSrc.Common.OperandControls.SetDestinationAddressingMode(
        TranslateVisaToHDLAddrMode(EncodingHelper::GetSrcAddrMode(src0)) );

    //if( EncodingHelper::GetSrcRegFile(src0)!=REG_FILE_A &&
    //    EncodingHelper::GetSrcAddrMode(src0) == ADDR_MODE_IMMED )
    //{
    //    bool repControl = EncodingHelper::GetRepControl(src0);
    //    uint32_t byteAddress = src0->getLinearizedStart();

    //    if (inst->isAligned1Inst() || repControl)
    //    {
    //        SetDstRegNumByte(mybin, byteAddress);
    //    } else {
    //        SetDstRegNumOWord(mybin, byteAddress/BYTES_PER_OWORD);
    //    }

    //}

    BinInst *bin = inst->getBinInst();
    bin->DWords[0] = oneSrc.GetDWord(0);
    bin->DWords[1] = oneSrc.GetDWord(1);
    bin->DWords[2] = oneSrc.GetDWord(2);
    bin->DWords[3] = oneSrc.GetDWord(3);

    return myStatus;
}


/// \brief Do encoding of JMPI instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingJMPI(G4_INST* inst)
{
    Status myStatus = SUCCESS;

    G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC brOneSrc;

    brOneSrc.Init();
    EncodeInstHeader(inst, brOneSrc.GetHeader());

    //BEGIN: OPND CONTROL WORD:
    DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeFlagReg(inst, brOneSrc.GetOperandControl());
    DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeMaskCtrl(inst, brOneSrc.GetOperandControl());

    //hardcode:
    brOneSrc.GetOperandControl().SetDestinationRegisterFile(G9HDL::REGFILE_ARF);
2125
    brOneSrc.GetOperandControl().SetDestinationDataType(getGenxPlatform() == GENX_CNL ? G9HDL::DSTTYPE_UD : G11HDL::DSTTYPE_UD);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
    brOneSrc.GetOperandControl().SetDestinationAddressingMode(G9HDL::ADDRMODE_DIRECT);

    //FIXME: bxml does not have arch reg file enumerations
    unsigned short RegFile = ARCH_REG_FILE_IP; //4 bits
    unsigned short RegNumValue = 0;
    // 7654|3210
    // RegF|RegNumVal
    unsigned short EncodedRegNum = RegFile << 4;
    EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);

    //the same as for align16
    brOneSrc.GetOperandControl().
        GetDestinationRegisterRegion_Align1().
        SetDestinationRegisterNumber_DestinationRegisterNumber(EncodedRegNum);
    brOneSrc.GetOperandControl().
        GetDestinationRegisterRegion_Align1().
        SetDestinationSubregisterNumber_DestinationSubRegisterNumber(0);

    brOneSrc.GetOperandControl().
        GetDestinationRegisterRegion_Align1().
        SetDestinationHorizontalStride( G9HDL::HORZSTRIDE_1_ELEMENTS );

    //src0, but belongs to opndCtl dword
    brOneSrc.GetOperandControl().SetSrc0Regfile( G9HDL::REGFILE_ARF );
    brOneSrc.GetOperandControl().SetSrc0Srctype(GetOperandSrcHDLType(Type_UD));

    //END: OPND CONTROL WORD

    //BEGIN: src0
    if ( inst->getSrc(0) )
    {
        SrcOperandEncoder<G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC,0>::
            SetSourceAddressingMode(&brOneSrc,G9HDL::ADDRMODE_DIRECT);
        //FIXME: bxml does not have arch reg file enumerations
        unsigned short RegFile = ARCH_REG_FILE_IP; //4 bits
        unsigned short RegNumValue = 0;
        // 7654|3210
        // RegF|RegNumVal
        unsigned short EncodedRegNum = RegFile << 4;
        EncodedRegNum = EncodedRegNum | (RegNumValue & 0xF);
        SrcOperandEncoder<G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC,0>::
            SetSourceRegisterNumber(&brOneSrc,EncodedRegNum);
        SrcOperandEncoder<G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC,0>::
            SetSourceSubRegisterNumber(&brOneSrc,0);

        brOneSrc.SetSource0_SourceWidth(G9HDL::WIDTH_1_ELEMENTS);
        if ( inst->getSrc(0)->isLabel() )
        {
            brOneSrc.SetSource0_SourceVerticalStride(G9HDL::VERTSTRIDE_0_ELEMENTS);
            brOneSrc.SetSource0_SourceHorizontalStride(G9HDL::HORZSTRIDE_0_ELEMENTS);
            brOneSrc.SetSource0_SourceModifier(G9HDL::SRCMOD_NO_MODIFICATION);
        }
    }

    if ( inst->getSrc(0)                &&
         inst->getSrc(0)->isSrcRegRegion() )
    {

        G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* ptr = (G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC*)&brOneSrc;

        SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG,1>::EncodeEuInstructionSourcesReg(
            inst, inst->getSrc(0), ptr->GetRegsource() //by reference
            );

        ptr->GetRegsource().SetSrc1Regfile( TranslateVisaToHDLRegFile( EncodingHelper::GetSrcRegFile(inst->getSrc(0)) ) );

        if (!inst->getSrc(0)->isImm())
        {
            ptr->GetRegsource().SetSrc1Srctype(GetOperandSrcHDLType(inst->getSrc(0)->getType()));
        }
    }

    //END: src0

    //BEGIN: src1
    // The rest is encoded in EncodeConditionalBranches
    //END: src1
    BinInst *bin = inst->getBinInst();
    bin->DWords[0] = brOneSrc.GetDWORD(0);
    bin->DWords[1] = brOneSrc.GetDWORD(1);
    bin->DWords[2] = brOneSrc.GetDWORD(2);
    bin->DWords[3] = brOneSrc.GetDWORD(3);

    return myStatus;
}

BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingCALL(G4_INST* inst)
{
	Status myStatus = SUCCESS;

	BinInst *bin = inst->getBinInst();
	G9HDL::EU_INSTRUCTION_BRANCH_ONE_SRC oneSrc;
	oneSrc.Init();

	EncodeInstHeader(inst, oneSrc.GetHeader());
	EncodeOperandDst(inst, oneSrc.GetOperandControl());

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    if (inst->getSrc(0) && !inst->getSrc(0)->isLabel())
    {
        // indirect call
        G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC* ptr = (G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC*)&oneSrc;

        SrcBuilder<G9HDL::EU_INSTRUCTION_SOURCES_REG_REG, 1>::EncodeEuInstructionSourcesReg(
            inst, inst->getSrc(0), ptr->GetRegsource() //by reference
        );

        ptr->GetRegsource().SetSrc1Regfile(TranslateVisaToHDLRegFile(EncodingHelper::GetSrcRegFile(inst->getSrc(0))));

        if (!inst->getSrc(0)->isImm())
        {
            ptr->GetRegsource().SetSrc1Srctype(GetOperandSrcHDLType(inst->getSrc(0)->getType()));
        }
    }
    else
    { 
        //Needed for correctness
        oneSrc.SetSrc1Regfile(G9HDL::REGFILE_IMM);
        oneSrc.SetSrc1Srctype(GetOperandSrcHDLImmType(Type_D));
    }

   

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

	bin->DWords[0] = oneSrc.GetDWORD(0);
	bin->DWords[1] = oneSrc.GetDWORD(1);
	bin->DWords[2] = oneSrc.GetDWORD(2);
	bin->DWords[3] = oneSrc.GetDWORD(3);

	return myStatus;
}

/// \brief Do encoding of control flow type instructions
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingCF(G4_INST* inst)
{
    Status myStatus = SUCCESS;
    BinInst *bin = inst->getBinInst();

    G9HDL::EU_INSTRUCTION_BRANCH_TWO_SRC brTwoSrc;
    brTwoSrc.Init();
    //brTwoSrc.Common.OperandControls
    EncodeInstHeader(inst, brTwoSrc.GetHeader());
    //fixme: not sure why we are setting only this field for dst, but keep the binary encoding the same as original one...
    brTwoSrc.GetOperandControl().GetDestinationRegisterRegion_Align1().SetDestinationHorizontalStride(G9HDL::HORZSTRIDE_1_ELEMENTS);
    DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeFlagReg(inst, brTwoSrc.GetOperandControl());
    DstBuilder<G9HDL::EU_INSTRUCTION_OPERAND_CONTROLS>::EncodeMaskCtrl(inst, brTwoSrc.GetOperandControl());
    bin->DWords[0] = brTwoSrc.GetDWord(0);
    bin->DWords[1] = brTwoSrc.GetDWord(1);
    bin->DWords[2] = brTwoSrc.GetDWord(2);
    bin->DWords[3] = brTwoSrc.GetDWord(3);
    return myStatus;
}

/// \brief Do encoding of split send instruction
///
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingSplitSEND(G4_INST* inst)
{
    Status myStatus = SUCCESS;
    BinInst *bin = inst->getBinInst();

    G9HDL::EU_INSTRUCTION_SENDS sends;
    sends.Init();

    EncodeSplitSend( inst, sends );

    bin->DWords[0] = sends.GetDWORD(0);
    bin->DWords[1] = sends.GetDWORD(1);
    bin->DWords[2] = sends.GetDWORD(2);
    bin->DWords[3] = sends.GetDWORD(3);

    //This is a workaround for BXML defect
    G4_Operand *src3 = inst->getSrc(3);
    // additional extended msg desc to be encoded
    // FIXME: does it apply to regular SKL+ sends too?
    if ( src3 && src3->isSrcRegRegion() && src3->asSrcRegRegion()->isA0() )
    {
        bin->SetBits(bitsSendsSelReg32ExDesc_0, bitsSendsSelReg32ExDesc_1, 1);
        bin->SetBits(bitsSendsExDescRegNum_0, bitsSendsExDescRegNum_1,
            src3->asSrcRegRegion()->getBase()->asRegVar()->getPhyRegOff());
    }

    return myStatus;
}

/// \brief Do encoding of all 'regular' one, two or three-src instructions
///        Treats send and math instructions as two-src and patches them accordingly.
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncodingRegular(G4_INST* inst)
{
    Status myStatus = SUCCESS;

    MUST_BE_TRUE( !inst->isSplitSend(), "Improper instruction type called with DoAllEncodingRegular: sends or sendsc");

    BinInst *bin = inst->getBinInst();
    int i=inst->getNumSrc();
    switch (i)
    {
    case 0:
    {
        // for nop, we have to encode the opcode, borrow the oneSrc format
        G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC oneSrc;
        oneSrc.Init();
        EncodeOpCode(inst, oneSrc.Common.Header);
        bin->DWords[0] = oneSrc.GetDWord(0);
        bin->DWords[1] = oneSrc.GetDWord(1);
        bin->DWords[2] = oneSrc.GetDWord(2);
        bin->DWords[3] = oneSrc.GetDWord(3);
        break;
    }
    case 1:
        G9HDL::EU_INSTRUCTION_BASIC_ONE_SRC oneSrc;
        oneSrc.Init();
        EncodeOneSrcInst(inst, oneSrc);
        bin->DWords[0] = oneSrc.GetDWord(0);
        bin->DWords[1] = oneSrc.GetDWord(1);
        bin->DWords[2] = oneSrc.GetDWord(2);
        bin->DWords[3] = oneSrc.GetDWord(3);
        break;
    case 2:
        G9HDL::EU_INSTRUCTION_BASIC_TWO_SRC twoSrc;
        twoSrc.Init();
        EncodeTwoSrcInst(inst, twoSrc);
        if (inst->isSend())
        {
            PatchSend( inst, &twoSrc );
        }
        else if(inst->isMath())
        {
            //fixme: math is only for two-src encoding?
            PatchMath( inst, &twoSrc );
        }

        bin->DWords[0] = twoSrc.GetDWord(0);
        bin->DWords[1] = twoSrc.GetDWord(1);
        bin->DWords[2] = twoSrc.GetDWord(2);
        bin->DWords[3] = twoSrc.GetDWord(3);
        break;
    case 3:
		{
			if(inst->isAligned1Inst())
			{
				G9HDL::EU_INSTRUCTION_ALIGN1_THREE_SRC threeSrcAlign1;
				threeSrcAlign1.Init();
				EncodeThreeSrcInstAlign1(inst, threeSrcAlign1);
				bin->DWords[0] = threeSrcAlign1.GetRawData(0);
				bin->DWords[1] = threeSrcAlign1.GetRawData(1);
				bin->DWords[2] = threeSrcAlign1.GetRawData(2);
				bin->DWords[3] = threeSrcAlign1.GetRawData(3);

			}
			else
			{
				G9HDL::EU_INSTRUCTION_BASIC_THREE_SRC threeSrc;
				threeSrc.Init();
				EncodeThreeSrcInst(inst, threeSrc);
				bin->DWords[0] = threeSrc.GetDWORD(0);
				bin->DWords[1] = threeSrc.GetDWORD(1);
				bin->DWords[2] = threeSrc.GetDWORD(2);
				bin->DWords[3] = threeSrc.GetDWORD(3);
			}

		}
        break;
    default:
        break;
    }

    return myStatus;
}

/// \brief Do all encoding for an instruction.
BinaryEncodingCNL::Status BinaryEncodingCNL::DoAllEncoding(G4_INST* inst)
{
    Status myStatus = SUCCESS;
    bool isFCCall = false, isFCRet = false;

    if(inst->opcode() == G4_label) return myStatus;

    if(inst->opcode() == G4_illegal)
        return FAILURE;

    EncodingHelper::mark3Src(inst);

	{

        //Prolog:
        if(inst->opcode() == G4_pseudo_fc_call)
        {
            inst->setOpcode(G4_call);
            isFCCall = true;
        }

        if(inst->opcode() == G4_pseudo_fc_ret)
        {
            inst->setOpcode(G4_return);
            isFCRet = true;
        }

        if( inst->opcode() == G4_jmpi )
        {
            DoAllEncodingJMPI( inst );
        }
        else if( inst->opcode() == G4_wait )
        {
            DoAllEncodingWAIT( inst );
        }
        else if( inst->opcode() == G4_if ||
            inst->opcode() == G4_endif ||
            inst->opcode() == G4_else  ||
            inst->opcode() == G4_while ||
            inst->opcode() == G4_break ||
            inst->opcode() == G4_cont ||
            inst->opcode() == G4_halt ||
            inst->opcode() == G4_goto ||
            inst->opcode() == G4_join )
        {
            DoAllEncodingCF( inst );
        }
		else if ( inst->opcode() == G4_call )
		{
			DoAllEncodingCALL( inst );
		}
        else if(inst->isSplitSend()) {
            DoAllEncodingSplitSEND( inst );
        }
        else if ( !EncodingHelper::hasLabelString(inst) )  {
            DoAllEncodingRegular( inst );
        }

        //Epilog:
        if(isFCCall == true)
        {
            inst->setOpcode(G4_pseudo_fc_call);
        }

        if(isFCRet == true)
        {
            inst->setOpcode(G4_pseudo_fc_ret);
        }
    }

    return myStatus;
}

/// \brief Entry point.
///
/// This is counterpart of ProduceBinaryInstructions from 'old' encoder
void BinaryEncodingCNL::DoAll()
{
    std::vector<ForwardJmpOffset> offsetVector;
	FixInst();
    BinaryEncodingBase::InitPlatform();
    // BDW/CHV/SKL/BXT/CNL use the same compaction tables except from 3src.
    for ( uint8_t i=0; i<(int)COMPACT_TABLE_SIZE; i++ )
    {
        BDWCompactControlTable.AddIndex(IVBCompactControlTable[i], i);
        BDWCompactSourceTable.AddIndex(IVBCompactSourceTable[i], i);
        BDWCompactSubRegTable.AddIndex(IVBCompactSubRegTable[i], i);
        BDWCompactSubRegTable.AddIndex1(IVBCompactSubRegTable[i] & 0x1F, i);
        BDWCompactSubRegTable.AddIndex2(IVBCompactSubRegTable[i] & 0x3FF, i);
        if (getGenxPlatform() > GENX_CNL)
2486 2487
        {  
            BDWCompactDataTypeTableStr.AddIndex(ICLCompactDataTypeTable[i], i);
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
        }
        else
        {
            BDWCompactDataTypeTableStr.AddIndex(BDWCompactDataTypeTable[i], i);
        }
    }

	int globalInstNum = 0;
	int globalHalfInstNum = 0;
	int numCompactedInst = 0;
	int numCompacted3SrcInst = 0;

    BB_LIST_ITER ib, bend(kernel.fg.BBs.end());
    for(ib = kernel.fg.BBs.begin(); ib != bend; ++ib)
    {
        G4_BB *bb = *ib;
        int localInstNum = 0;
        int localHalfInstNum = 0;

        /**
         * Traverse the instruction lists
         */
2510 2511
        INST_LIST_ITER ii, iend(bb->end());
        for (ii = bb->begin(); ii != iend; ++ii)
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
        {
            /* do detailed encoding here */
            G4_INST *inst = *ii;
			G4_opcode opcode = inst->opcode();

            if (opcode == G4_label)
            {
                inst->setBinInst(NULL);
            } else {
                // reuse "BinInst" from BinaryEncoding.h which can be simplified
                BinInst *bin = new (mem) BinInst();
                inst->setBinInst(bin);

                bin->DWords[0] = 0;
                bin->DWords[1] = 0;
                bin->DWords[2] = 0;
                bin->DWords[3] = 0;

                DoAllEncoding( inst );

                if(inst->opcode() == G4_pseudo_fc_call ||
                   inst->opcode() == G4_pseudo_fc_ret)
                {
                    inst->getBinInst()->SetDontCompactFlag(true);
                }

                if (doCompaction())
                {
                    inst->getBinInst()->SetMustCompactFlag(false);
                    /**
                     * handling switch/case for gen6: jump table should not be compacted
                     */
                    startTimer(TIMER_ENCODE_COMPACTION);
                    bool compacted = BinaryEncodingBase::compactOneInstruction(inst);
                    stopTimer(TIMER_ENCODE_COMPACTION);

                    if (compacted)
                    {
                        if (kernel.getOption(vISA_OptReport))
                        {
                            numCompactedInst++;
                            if ( inst->getBinInst()->GetIs3Src() )
                                numCompacted3SrcInst++;
                        }
                        inst->setCompacted();
                    }
                }
                binInstList.push_back(inst->getBinInst());

                if (inst->opcode() >= G4_jmpi && inst->opcode() <= G4_join)
                {
                    if (!EncodeConditionalBranches(inst, globalHalfInstNum))
                    {
                        offsetVector.push_back(ForwardJmpOffset(inst, globalHalfInstNum));
                    }
                }
            } //else

			BuildLabelMap(inst, localHalfInstNum, localInstNum,
				          globalHalfInstNum, globalInstNum);
        } // for inst
    } // for bb

	kernel.setAsmCount(globalInstNum);
	SetInstCounts((uint32_t)globalHalfInstNum);

    EncodingHelper::dumpOptReport(globalInstNum, numCompactedInst, numCompacted3SrcInst, kernel);
    for (auto x = offsetVector.begin(); x != offsetVector.end(); x++)
    {
        if (!EncodeConditionalBranches(x->inst, x->offset))
        {
            MUST_BE_TRUE(false, "invalid label!");
        }
    }
}