jbig_ar.c 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/*
 *  Arithmetic encoder and decoder of the portable JBIG
 *  compression library
 *
 *  Markus Kuhn -- http://www.cl.cam.ac.uk/~mgk25/jbigkit/
 *
 *  This module implements a portable standard C arithmetic encoder
 *  and decoder used by the JBIG lossless bi-level image compression
 *  algorithm as specified in International Standard ISO 11544:1993
 *  and ITU-T Recommendation T.82.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * 
 *  If you want to use this program under different license conditions,
 *  then contact the author for an arrangement.
 *
 *  It is possible that certain products which can be built using this
 *  software module might form inventions protected by patent rights in
 *  some countries (e.g., by patents about arithmetic coding algorithms
 *  owned by IBM and AT&T in the USA). Provision of this software by the
 *  author does NOT include any licences for any patents. In those
 *  countries where a patent licence is required for certain applications
 *  of this software module, you will have to obtain such a licence
 *  yourself.
 */

#include <assert.h>
#include "jbig_ar.h"

/*
 *  Probability estimation tables for the arithmetic encoder/decoder
 *  given by ITU T.82 Table 24.
 */

static short lsztab[113] = {
  0x5a1d, 0x2586, 0x1114, 0x080b, 0x03d8, 0x01da, 0x00e5, 0x006f,
  0x0036, 0x001a, 0x000d, 0x0006, 0x0003, 0x0001, 0x5a7f, 0x3f25,
  0x2cf2, 0x207c, 0x17b9, 0x1182, 0x0cef, 0x09a1, 0x072f, 0x055c,
  0x0406, 0x0303, 0x0240, 0x01b1, 0x0144, 0x00f5, 0x00b7, 0x008a,
  0x0068, 0x004e, 0x003b, 0x002c, 0x5ae1, 0x484c, 0x3a0d, 0x2ef1,
  0x261f, 0x1f33, 0x19a8, 0x1518, 0x1177, 0x0e74, 0x0bfb, 0x09f8,
  0x0861, 0x0706, 0x05cd, 0x04de, 0x040f, 0x0363, 0x02d4, 0x025c,
  0x01f8, 0x01a4, 0x0160, 0x0125, 0x00f6, 0x00cb, 0x00ab, 0x008f,
  0x5b12, 0x4d04, 0x412c, 0x37d8, 0x2fe8, 0x293c, 0x2379, 0x1edf,
  0x1aa9, 0x174e, 0x1424, 0x119c, 0x0f6b, 0x0d51, 0x0bb6, 0x0a40,
  0x5832, 0x4d1c, 0x438e, 0x3bdd, 0x34ee, 0x2eae, 0x299a, 0x2516,
  0x5570, 0x4ca9, 0x44d9, 0x3e22, 0x3824, 0x32b4, 0x2e17, 0x56a8,
  0x4f46, 0x47e5, 0x41cf, 0x3c3d, 0x375e, 0x5231, 0x4c0f, 0x4639,
  0x415e, 0x5627, 0x50e7, 0x4b85, 0x5597, 0x504f, 0x5a10, 0x5522,
  0x59eb
};

static unsigned char nmpstab[113] = {
    1,   2,   3,   4,   5,   6,   7,   8,
    9,  10,  11,  12,  13,  13,  15,  16,
   17,  18,  19,  20,  21,  22,  23,  24,
   25,  26,  27,  28,  29,  30,  31,  32,
   33,  34,  35,   9,  37,  38,  39,  40,
   41,  42,  43,  44,  45,  46,  47,  48,
   49,  50,  51,  52,  53,  54,  55,  56,
   57,  58,  59,  60,  61,  62,  63,  32,
   65,  66,  67,  68,  69,  70,  71,  72,
   73,  74,  75,  76,  77,  78,  79,  48,
   81,  82,  83,  84,  85,  86,  87,  71,
   89,  90,  91,  92,  93,  94,  86,  96,
   97,  98,  99, 100,  93, 102, 103, 104,
   99, 106, 107, 103, 109, 107, 111, 109,
  111
};

/*
 * least significant 7 bits (mask 0x7f) of nlpstab[] contain NLPS value,
 * most significant bit (mask 0x80) contains SWTCH bit
 */
static unsigned char nlpstab[113] = {
  129,  14,  16,  18,  20,  23,  25,  28,
   30,  33,  35,   9,  10,  12, 143,  36,
   38,  39,  40,  42,  43,  45,  46,  48,
   49,  51,  52,  54,  56,  57,  59,  60,
   62,  63,  32,  33, 165,  64,  65,  67,
   68,  69,  70,  72,  73,  74,  75,  77,
   78,  79,  48,  50,  50,  51,  52,  53,
   54,  55,  56,  57,  58,  59,  61,  61,
  193,  80,  81,  82,  83,  84,  86,  87,
   87,  72,  72,  74,  74,  75,  77,  77,
  208,  88,  89,  90,  91,  92,  93,  86,
  216,  95,  96,  97,  99,  99,  93, 223,
  101, 102, 103, 104,  99, 105, 106, 107,
  103, 233, 108, 109, 110, 111, 238, 112,
  240
};

/*
 * The next functions implement the arithmedic encoder and decoder
 * required for JBIG. The same algorithm is also used in the arithmetic
 * variant of JPEG.
 */

/* marker codes */
#define MARKER_STUFF    0x00
#define MARKER_ESC      0xff

void arith_encode_init(struct jbg_arenc_state *s, int reuse_st)
{
  int i;
  
  if (!reuse_st)
    for (i = 0; i < 4096; s->st[i++] = 0);
  s->c = 0;
  s->a = 0x10000L;
  s->sc = 0;
  s->ct = 11;
  s->buffer = -1;    /* empty */
  
  return;
}


void arith_encode_flush(struct jbg_arenc_state *s)
{
  unsigned long temp;

  /* find the s->c in the coding interval with the largest
   * number of trailing zero bits */
  if ((temp = (s->a - 1 + s->c) & 0xffff0000L) < s->c)
    s->c = temp + 0x8000;
  else
    s->c = temp;
  /* send remaining bytes to output */
  s->c <<= s->ct;
  if (s->c & 0xf8000000L) {
    /* one final overflow has to be handled */
    if (s->buffer >= 0) {
      s->byte_out(s->buffer + 1, s->file);
      if (s->buffer + 1 == MARKER_ESC)
	s->byte_out(MARKER_STUFF, s->file);
    }
    /* output 0x00 bytes only when more non-0x00 will follow */
    if (s->c & 0x7fff800L)
      for (; s->sc; --s->sc)
	s->byte_out(0x00, s->file);
  } else {
    if (s->buffer >= 0)
      s->byte_out(s->buffer, s->file); 
    /* T.82 figure 30 says buffer+1 for the above line! Typo? */
    for (; s->sc; --s->sc) {
      s->byte_out(0xff, s->file);
      s->byte_out(MARKER_STUFF, s->file);
    }
  }
  /* output final bytes only if they are not 0x00 */
  if (s->c & 0x7fff800L) {
    s->byte_out((s->c >> 19) & 0xff, s->file);
    if (((s->c >> 19) & 0xff) == MARKER_ESC)
      s->byte_out(MARKER_STUFF, s->file);
    if (s->c & 0x7f800L) {
      s->byte_out((s->c >> 11) & 0xff, s->file);
      if (((s->c >> 11) & 0xff) == MARKER_ESC)
	s->byte_out(MARKER_STUFF, s->file);
    }
  }

  return;
}


void arith_encode(struct jbg_arenc_state *s, int cx, int pix) 
{
  register unsigned lsz, ss;
  register unsigned char *st;
  long temp;

  assert(cx >= 0 && cx < 4096);
  st = s->st + cx;
  ss = *st & 0x7f;
  assert(ss < 113);
  lsz = lsztab[ss];

#if 0
  fprintf(stderr, "pix = %d, cx = %d, mps = %d, st = %3d, lsz = 0x%04x, "
	  "a = 0x%05lx, c = 0x%08lx, ct = %2d, buf = 0x%02x\n",
	  pix, cx, !!(s->st[cx] & 0x80), ss, lsz, s->a, s->c, s->ct,
	  s->buffer);
#endif

  if (((pix << 7) ^ s->st[cx]) & 0x80) {
    /* encode the less probable symbol */
    if ((s->a -= lsz) >= lsz) {
      /* If the interval size (lsz) for the less probable symbol (LPS)
       * is larger than the interval size for the MPS, then exchange
       * the two symbols for coding efficiency, otherwise code the LPS
       * as usual: */
      s->c += s->a;
      s->a = lsz;
    }
    /* Check whether MPS/LPS exchange is necessary
     * and chose next probability estimator status */
    *st &= 0x80;
    *st ^= nlpstab[ss];
  } else {
    /* encode the more probable symbol */
    if ((s->a -= lsz) & 0xffff8000L)
      return;   /* A >= 0x8000 -> ready, no renormalization required */
    if (s->a < lsz) {
      /* If the interval size (lsz) for the less probable symbol (LPS)
       * is larger than the interval size for the MPS, then exchange
       * the two symbols for coding efficiency: */
      s->c += s->a;
      s->a = lsz;
    }
    /* chose next probability estimator status */
    *st &= 0x80;
    *st |= nmpstab[ss];
  }

  /* renormalization of coding interval */
  do {
    s->a <<= 1;
    s->c <<= 1;
    --s->ct;
    if (s->ct == 0) {
      /* another byte is ready for output */
      temp = s->c >> 19;
      if (temp & 0xffffff00L) {
	/* handle overflow over all buffered 0xff bytes */
	if (s->buffer >= 0) {
	  ++s->buffer;
	  s->byte_out(s->buffer, s->file);
	  if (s->buffer == MARKER_ESC)
	    s->byte_out(MARKER_STUFF, s->file);
	}
	for (; s->sc; --s->sc)
	  s->byte_out(0x00, s->file);
	s->buffer = temp & 0xff;  /* new output byte, might overflow later */
	assert(s->buffer != 0xff);
	/* can s->buffer really never become 0xff here? */
      } else if (temp == 0xff) {
	/* buffer 0xff byte (which might overflow later) */
	++s->sc;
      } else {
	/* output all buffered 0xff bytes, they will not overflow any more */
	if (s->buffer >= 0)
	  s->byte_out(s->buffer, s->file);
	for (; s->sc; --s->sc) {
	  s->byte_out(0xff, s->file);
	  s->byte_out(MARKER_STUFF, s->file);
	}
	s->buffer = temp;   /* buffer new output byte (can still overflow) */
      }
      s->c &= 0x7ffffL;
      s->ct = 8;
    }
  } while (s->a < 0x8000);
 
  return;
}


void arith_decode_init(struct jbg_ardec_state *s, int reuse_st)
{
  int i;
  
  if (!reuse_st)
    for (i = 0; i < 4096; s->st[i++] = 0);
  s->c = 0;
  s->a = 1;
  s->ct = 0;
  s->startup = 1;
  s->nopadding = 0;
  return;
}

/*
 * Decode and return one symbol from the provided PSCD byte stream
 * that starts in s->pscd_ptr and ends in the byte before s->pscd_end.
 * The context cx is a 12-bit integer in the range 0..4095. This
 * function will advance s->pscd_ptr each time it has consumed all
 * information from that PSCD byte.
 *
 * If a symbol has been decoded successfully, the return value will be
 * 0 or 1 (depending on the symbol).
 *
 * If the decoder was not able to decode a symbol from the provided
 * PSCD, then the return value will be -1, and two cases can be
 * distinguished:
 *
 * s->pscd_ptr == s->pscd_end:
 *
 *   The decoder has used up all information in the provided PSCD
 *   bytes. Further PSCD bytes have to be provided (via new values of
 *   s->pscd_ptr and/or s->pscd_end) before another symbol can be
 *   decoded.
 *
 * s->pscd_ptr == s->pscd_end - 1:
 * 
 *   The decoder has used up all provided PSCD bytes except for the
 *   very last byte, because that has the value 0xff. The decoder can
 *   at this point not yet tell whether this 0xff belongs to a
 *   MARKER_STUFF sequence or marks the end of the PSCD. Further PSCD
 *   bytes have to be provided (via new values of s->pscd_ptr and/or
 *   s->pscd_end), including the not yet processed 0xff byte, before
 *   another symbol can be decoded successfully.
 *
 * If s->nopadding != 0, the decoder will return -2 when it reaches
 * the first two bytes of the marker segment that follows (and
 * terminates) the PSCD, but before decoding the first symbol that
 * depends on a bit in the input data that could have been the result
 * of zero padding, and might, therefore, never have been encoded.
 * This gives the caller the opportunity to lookahead early enough
 * beyond a terminating SDNORM/SDRST for a trailing NEWLEN (as
 * required by T.85) before decoding remaining symbols. Call the
 * decoder again afterwards as often as necessary (leaving s->pscd_ptr
 * pointing to the start of the marker segment) to retrieve any
 * required remaining symbols that might depend on padding.
 *
 * [Note that each PSCD can be decoded into an infinitely long
 * sequence of symbols, because the encoder might have truncated away
 * an arbitrarily long sequence of trailing 0x00 bytes, which the
 * decoder will append automatically as needed when it reaches the end
 * of the PSCD. Therefore, the decoder cannot report any end of the
 * symbol sequence and other means (external to the PSCD and
 * arithmetic decoding process) are needed to determine that.]
 */

int arith_decode(struct jbg_ardec_state *s, int cx)
{
  register unsigned lsz, ss;
  register unsigned char *st;
  int pix;

  /* renormalization */
  while (s->a < 0x8000 || s->startup) {
    while (s->ct <= 8 && s->ct >= 0) {
      /* first we can move a new byte into s->c */
      if (s->pscd_ptr >= s->pscd_end) {
	return -1;  /* more bytes needed */
      }
      if (*s->pscd_ptr == 0xff) 
	if (s->pscd_ptr + 1 >= s->pscd_end) {
	  return -1; /* final 0xff byte not processed */
	} else {
	  if (*(s->pscd_ptr + 1) == MARKER_STUFF) {
	    s->c |= 0xffL << (8 - s->ct);
	    s->ct += 8;
	    s->pscd_ptr += 2;
	  } else {
	    s->ct = -1; /* start padding with zero bytes */
	    if (s->nopadding) {
	      s->nopadding = 0;
	      return -2; /* subsequent symbols might depend on zero padding */
	    }
	  }
	}
      else {
	s->c |= (long)*(s->pscd_ptr++) << (8 - s->ct);
	s->ct += 8;
      }
    }
    s->c <<= 1;
    s->a <<= 1;
    if (s->ct >= 0) s->ct--;
    if (s->a == 0x10000L)
      s->startup = 0;
  }

  st = s->st + cx;
  ss = *st & 0x7f;
  assert(ss < 113);
  lsz = lsztab[ss];

#if 0
  fprintf(stderr, "cx = %d, mps = %d, st = %3d, lsz = 0x%04x, a = 0x%05lx, "
	  "c = 0x%08lx, ct = %2d\n",
	  cx, !!(s->st[cx] & 0x80), ss, lsz, s->a, s->c, s->ct);
#endif

  if ((s->c >> 16) < (s->a -= lsz))
    if (s->a & 0xffff8000L)
      return *st >> 7;
    else {
      /* MPS_EXCHANGE */
      if (s->a < lsz) {
	pix = 1 - (*st >> 7);
	/* Check whether MPS/LPS exchange is necessary
	 * and chose next probability estimator status */
	*st &= 0x80;
	*st ^= nlpstab[ss];
      } else {
	pix = *st >> 7;
	*st &= 0x80;
	*st |= nmpstab[ss];
      }
    }
  else {
    /* LPS_EXCHANGE */
    if (s->a < lsz) {
      s->c -= s->a << 16;
      s->a = lsz;
      pix = *st >> 7;
      *st &= 0x80;
      *st |= nmpstab[ss];
    } else {
      s->c -= s->a << 16;
      s->a = lsz;
      pix = 1 - (*st >> 7);
      /* Check whether MPS/LPS exchange is necessary
       * and chose next probability estimator status */
      *st &= 0x80;
      *st ^= nlpstab[ss];
    }
  }

  return pix;
}