README.md 7.88 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
[![Build Status](https://travis-ci.org/Yelp/py_zipkin.svg?branch=master)](https://travis-ci.org/Yelp/py_zipkin)
[![Coverage Status](https://img.shields.io/coveralls/Yelp/py_zipkin.svg)](https://coveralls.io/r/Yelp/py_zipkin)
[![PyPi version](https://img.shields.io/pypi/v/py_zipkin.svg)](https://pypi.python.org/pypi/py_zipkin/)
[![Supported Python versions](https://img.shields.io/pypi/pyversions/py_zipkin.svg)](https://pypi.python.org/pypi/py_zipkin/)

py_zipkin
---------

py_zipkin provides a context manager/decorator along with some utilities to
facilitate the usage of Zipkin in Python applications.

Install
-------

```
pip install py_zipkin
```

Usage
-----

py_zipkin requires a `transport_handler` object that handles logging zipkin
messages to a central logging service such as kafka or scribe.

`py_zipkin.zipkin.zipkin_span` is the main tool for starting zipkin traces or
logging spans inside an ongoing trace. zipkin_span can be used as a context
manager or a decorator.

#### Usage #1: Start a trace with a given sampling rate

```python
from py_zipkin.zipkin import zipkin_span

def some_function(a, b):
    with zipkin_span(
        service_name='my_service',
        span_name='my_span_name',
        transport_handler=some_handler,
        port=42,
        sample_rate=0.05, # Value between 0.0 and 100.0
    ):
        do_stuff(a, b)
```

#### Usage #2: Trace a service call

The difference between this and Usage #1 is that the zipkin_attrs are calculated
separately and passed in, thus negating the need of the sample_rate param.

```python
# Define a pyramid tween
def tween(request):
    zipkin_attrs = some_zipkin_attr_creator(request)
    with zipkin_span(
        service_name='my_service',
        span_name='my_span_name',
        zipkin_attrs=zipkin_attrs,
        transport_handler=some_handler,
        port=22,
    ) as zipkin_context:
        response = handler(request)
        zipkin_context.update_binary_annotations(
            some_binary_annotations)
        return response
```

#### Usage #3: Log a span inside an ongoing trace

This can be also be used inside itself to produce continuously nested spans.

```python
@zipkin_span(service_name='my_service', span_name='some_function')
def some_function(a, b):
    return do_stuff(a, b)
```

#### Other utilities

`zipkin_span.update_binary_annotations()` can be used inside a zipkin trace
to add to the existing set of binary annotations.

```python
def some_function(a, b):
    with zipkin_span(
        service_name='my_service',
        span_name='some_function',
        transport_handler=some_handler,
        port=42,
        sample_rate=0.05,
    ) as zipkin_context:
        result = do_stuff(a, b)
        zipkin_context.update_binary_annotations({'result': result})
```

`zipkin_span.add_sa_binary_annotation()` can be used to add a binary annotation
to the current span with the key 'sa'. This function allows the user to specify the
destination address of the service being called (useful if the destination doesn't
support zipkin). See http://zipkin.io/pages/data_model.html for more information on the
'sa' binary annotation.

> NOTE: the V2 span format only support 1 "sa" endpoint (represented by remoteEndpoint)
> so `add_sa_binary_annotation` now raises `ValueError` if you try to set multiple "sa"
> annotations for the same span.

```python
def some_function():
    with zipkin_span(
        service_name='my_service',
        span_name='some_function',
        transport_handler=some_handler,
        port=42,
        sample_rate=0.05,
    ) as zipkin_context:
        make_call_to_non_instrumented_service()
        zipkin_context.add_sa_binary_annotation(
            port=123,
            service_name='non_instrumented_service',
            host='12.34.56.78',
        )
```

`create_http_headers_for_new_span()` creates a set of HTTP headers that can be forwarded
in a request to another service.

```python
headers = {}
headers.update(create_http_headers_for_new_span())
http_client.get(
    path='some_url',
    headers=headers,
)
```

Transport
---------

py_zipkin (for the moment) thrift-encodes spans. The actual transport layer is
pluggable, though.

The recommended way to implement a new transport handler is to subclass
`py_zipkin.transport.BaseTransportHandler` and implement the `send` and 
`get_max_payload_bytes` methods.

`send` receives an already encoded thrift list as argument.
`get_max_payload_bytes` should return the maximum payload size supported by your
transport, or `None` if you can send arbitrarily big messages.

The simplest way to get spans to the collector is via HTTP POST. Here's an
example of a simple HTTP transport using the `requests` library. This assumes
your Zipkin collector is running at localhost:9411.

> NOTE: older versions of py_zipkin suggested implementing the transport handler
> as a function with a single argument. That's still supported and should work
> with the current py_zipkin version, but it's deprecated. 

```python
import requests

from py_zipkin.transport import BaseTransportHandler


class HttpTransport(BaseTransportHandler):

    def get_max_payload_bytes(self):
        return None

    def send(self, encoded_span):
        # The collector expects a thrift-encoded list of spans.
        requests.post(
            'http://localhost:9411/api/v1/spans',
            data=encoded_span,
            headers={'Content-Type': 'application/x-thrift'},
        )
```

If you have the ability to send spans over Kafka (more like what you might do
in production), you'd do something like the following, using the
[kafka-python](https://pypi.python.org/pypi/kafka-python) package:

```python
from kafka import SimpleProducer, KafkaClient

from py_zipkin.transport import BaseTransportHandler


class KafkaTransport(BaseTransportHandler):

    def get_max_payload_bytes(self):
        # By default Kafka rejects messages bigger than 1000012 bytes.
        return 1000012

    def send(self, message):
        kafka_client = KafkaClient('{}:{}'.format('localhost', 9092))
        producer = SimpleProducer(kafka_client)
        producer.send_messages('kafka_topic_name', message)
```

Using in multithreading evironments
-----------------------------------

If you want to use py_zipkin in a cooperative multithreading environment,
e.g. asyncio, you need to explicitly pass an instance of `py_zipkin.storage.Stack`
as parameter `context_stack` for `zipkin_span` and `create_http_headers_for_new_span`.
By default, py_zipkin uses a thread local storage for the attributes, which is
defined in `py_zipkin.storage.ThreadLocalStack`.

Additionally, you'll also need to explicitly pass an instance of
`py_zipkin.storage.SpanStorage` as parameter `span_storage` to `zipkin_span`.

```python
from py_zipkin.zipkin import zipkin_span
from py_zipkin.storage import Stack
from py_zipkin.storage import SpanStorage


def my_function():
    context_stack = Stack()
    span_storage = SpanStorage()
    await my_function(context_stack, span_storage)

async def my_function(context_stack, span_storage):
    with zipkin_span(
        service_name='my_service',
        span_name='some_function',
        transport_handler=some_handler,
        port=42,
        sample_rate=0.05,
        context_stack=context_stack,
        span_storage=span_storage,
    ):
        result = do_stuff(a, b)
```


Firehose mode [EXPERIMENTAL]
----------------------------

"Firehose mode" records 100% of the spans, regardless of
sampling rate. This is useful if you want to treat these spans
differently, e.g. send them to a different backend that has limited
retention. It works in tandem with normal operation, however there may
be additional overhead. In order to use this, you add a
`firehose_handler` just like you add a `transport_handler`.

This feature should be considered experimental and may be removed at
any time without warning. If you do use this, be sure to send
asynchronously to avoid excess overhead for every request.


License
-------

Copyright (c) 2018, Yelp, Inc. All Rights reserved. Apache v2