verttransform_gfs.f90 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
!**********************************************************************
! Copyright 1998,1999,2000,2001,2002,2005,2007,2008,2009,2010         *
! Andreas Stohl, Petra Seibert, A. Frank, Gerhard Wotawa,             *
! Caroline Forster, Sabine Eckhardt, John Burkhart, Harald Sodemann   *
!                                                                     *
! This file is part of FLEXPART.                                      *
!                                                                     *
! FLEXPART is free software: you can redistribute it and/or modify    *
! it under the terms of the GNU General Public License as published by*
! the Free Software Foundation, either version 3 of the License, or   *
! (at your option) any later version.                                 *
!                                                                     *
! FLEXPART is distributed in the hope that it will be useful,         *
! but WITHOUT ANY WARRANTY; without even the implied warranty of      *
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the       *
! GNU General Public License for more details.                        *
!                                                                     *
! You should have received a copy of the GNU General Public License   *
! along with FLEXPART.  If not, see <http://www.gnu.org/licenses/>.   *
!**********************************************************************

subroutine verttransform(n,uuh,vvh,wwh,pvh)
  !                         i  i   i   i   i
  !*****************************************************************************
  !                                                                            *
  !     This subroutine transforms temperature, dew point temperature and      *
  !     wind components from eta to meter coordinates.                         *
  !     The vertical wind component is transformed from Pa/s to m/s using      *
  !     the conversion factor pinmconv.                                        *
  !     In addition, this routine calculates vertical density gradients        *
  !     needed for the parameterization of the turbulent velocities.           *
  !                                                                            *
  !     Author: A. Stohl, G. Wotawa                                            *
  !                                                                            *
  !     12 August 1996                                                         *
  !     Update: 16 January 1998                                                *
  !                                                                            *
  !     Major update: 17 February 1999                                         *
  !     by G. Wotawa                                                           *
  !     CHANGE 17/11/2005 Caroline Forster, NCEP GFS version                   *
  !                                                                            *
  !   - Vertical levels for u, v and w are put together                        *
  !   - Slope correction for vertical velocity: Modification of calculation    *
  !     procedure                                                              *
  !                                                                            *
  !*****************************************************************************
  !  Changes, Bernd C. Krueger, Feb. 2001:
  !   Variables tth and qvh (on eta coordinates) from common block
  !*****************************************************************************
  !                                                                            *
  ! Variables:                                                                 *
  ! nx,ny,nz                        field dimensions in x,y and z direction    *
  ! uu(0:nxmax,0:nymax,nzmax,2)     wind components in x-direction [m/s]       *
  ! vv(0:nxmax,0:nymax,nzmax,2)     wind components in y-direction [m/s]       *
  ! ww(0:nxmax,0:nymax,nzmax,2)     wind components in z-direction [deltaeta/s]*
  ! tt(0:nxmax,0:nymax,nzmax,2)     temperature [K]                            *
  ! pv(0:nxmax,0:nymax,nzmax,2)     potential voriticity (pvu)                 *
  ! ps(0:nxmax,0:nymax,2)           surface pressure [Pa]                      *
  ! clouds(0:nxmax,0:nymax,0:nzmax,2) cloud field for wet deposition           *
  !                                                                            *
  !*****************************************************************************

  use par_mod
  use com_mod
  use cmapf_mod

  implicit none

  integer :: ix,jy,kz,iz,n,kmin,kl,klp,ix1,jy1,ixp,jyp,ixm,jym
  integer :: rain_cloud_above,kz_inv
  real :: f_qvsat,pressure
  real :: rh,lsp,convp
  real :: uvzlev(nuvzmax),rhoh(nuvzmax),pinmconv(nzmax)
  real :: ew,pint,tv,tvold,pold,dz1,dz2,dz,ui,vi
  real :: xlon,ylat,xlonr,dzdx,dzdy
  real :: dzdx1,dzdx2,dzdy1,dzdy2
  real :: uuaux,vvaux,uupolaux,vvpolaux,ddpol,ffpol,wdummy
  real :: uuh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: vvh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: pvh(0:nxmax-1,0:nymax-1,nuvzmax)
  real :: wwh(0:nxmax-1,0:nymax-1,nwzmax)
  real :: wzlev(nwzmax),uvwzlev(0:nxmax-1,0:nymax-1,nzmax)
  real,parameter :: const=r_air/ga

  ! NCEP version
  integer :: llev, i

  logical :: init = .true.


  !*************************************************************************
  ! If verttransform is called the first time, initialize heights of the   *
  ! z levels in meter. The heights are the heights of model levels, where  *
  ! u,v,T and qv are given, and of the interfaces, where w is given. So,   *
  ! the vertical resolution in the z system is doubled. As reference point,*
  ! the lower left corner of the grid is used.                             *
  ! Unlike in the eta system, no difference between heights for u,v and    *
  ! heights for w exists.                                                  *
  !*************************************************************************

  if (init) then

  ! Search for a point with high surface pressure (i.e. not above significant topography)
  ! Then, use this point to construct a reference z profile, to be used at all times
  !*****************************************************************************

    do jy=0,nymin1
      do ix=0,nxmin1
        if (ps(ix,jy,1,n).gt.100000.) then
          ixm=ix
          jym=jy
          goto 3
        endif
      end do
    end do
3   continue


    tvold=tt2(ixm,jym,1,n)*(1.+0.378*ew(td2(ixm,jym,1,n))/ &
         ps(ixm,jym,1,n))
    pold=ps(ixm,jym,1,n)
    height(1)=0.

    do kz=2,nuvz
      pint=akz(kz)+bkz(kz)*ps(ixm,jym,1,n)
      tv=tth(ixm,jym,kz,n)*(1.+0.608*qvh(ixm,jym,kz,n))


  ! NOTE: In FLEXPART versions up to 4.0, the number of model levels was doubled
  ! upon the transformation to z levels. In order to save computer memory, this is
  ! not done anymore in the standard version. However, this option can still be
  ! switched on by replacing the following lines with those below, that are
  ! currently commented out.
  ! Note that two more changes are necessary in this subroutine below.
  ! One change is also necessary in gridcheck.f, and another one in verttransform_nests.
  !*****************************************************************************

      if (abs(tv-tvold).gt.0.2) then
        height(kz)= &
             height(kz-1)+const*log(pold/pint)* &
             (tv-tvold)/log(tv/tvold)
      else
        height(kz)=height(kz-1)+ &
             const*log(pold/pint)*tv
      endif

  ! Switch on following lines to use doubled vertical resolution
  !*************************************************************
  !    if (abs(tv-tvold).gt.0.2) then
  !      height((kz-1)*2)=
  !    +      height(max((kz-2)*2,1))+const*log(pold/pint)*
  !    +      (tv-tvold)/log(tv/tvold)
  !    else
  !      height((kz-1)*2)=height(max((kz-2)*2,1))+
  !    +      const*log(pold/pint)*tv
  !    endif
  ! End doubled vertical resolution

      tvold=tv
      pold=pint
    end do


  ! Switch on following lines to use doubled vertical resolution
  !*************************************************************
  !  do 7 kz=3,nz-1,2
  !    height(kz)=0.5*(height(kz-1)+height(kz+1))
  !  height(nz)=height(nz-1)+height(nz-1)-height(nz-2)
  ! End doubled vertical resolution


  ! Determine highest levels that can be within PBL
  !************************************************

    do kz=1,nz
      if (height(kz).gt.hmixmax) then
        nmixz=kz
        goto 9
      endif
    end do
9   continue

  ! Do not repeat initialization of the Cartesian z grid
  !*****************************************************

    init=.false.

  endif


  ! Loop over the whole grid
  !*************************

  do jy=0,nymin1
    do ix=0,nxmin1

  ! NCEP version: find first level above ground
      llev = 0
      do i=1,nuvz
       if (ps(ix,jy,1,n).lt.akz(i)) llev=i
      end do
       llev = llev+1
       if (llev.gt.nuvz-2) llev = nuvz-2
  !     if (llev.eq.nuvz-2) write(*,*) 'verttransform
  !    +WARNING: LLEV eq NUZV-2'
  ! NCEP version


  ! compute height of pressure levels above ground
  !***********************************************

      tvold=tth(ix,jy,llev,n)*(1.+0.608*qvh(ix,jy,llev,n))
      pold=akz(llev)
      uvzlev(llev)=0.
      wzlev(llev)=0.
      uvwzlev(ix,jy,llev)=0.
      rhoh(llev)=pold/(r_air*tvold)

      do kz=llev+1,nuvz
        pint=akz(kz)+bkz(kz)*ps(ix,jy,1,n)
        tv=tth(ix,jy,kz,n)*(1.+0.608*qvh(ix,jy,kz,n))
        rhoh(kz)=pint/(r_air*tv)

        if (abs(tv-tvold).gt.0.2) then
          uvzlev(kz)=uvzlev(kz-1)+const*log(pold/pint)* &
               (tv-tvold)/log(tv/tvold)
        else
          uvzlev(kz)=uvzlev(kz-1)+const*log(pold/pint)*tv
        endif
        wzlev(kz)=uvzlev(kz)
        uvwzlev(ix,jy,kz)=uvzlev(kz)

        tvold=tv
        pold=pint
      end do


  ! Switch on following lines to use doubled vertical resolution
  ! Switch off the three lines above.
  !*************************************************************
  !22          uvwzlev(ix,jy,(kz-1)*2)=uvzlev(kz)
  !     do 23 kz=2,nwz
  !23          uvwzlev(ix,jy,(kz-1)*2+1)=wzlev(kz)
  ! End doubled vertical resolution

  ! pinmconv=(h2-h1)/(p2-p1)

      pinmconv(llev)=(uvwzlev(ix,jy,llev+1)-uvwzlev(ix,jy,llev))/ &
           ((aknew(llev+1)+bknew(llev+1)*ps(ix,jy,1,n))- &
           (aknew(llev)+bknew(llev)*ps(ix,jy,1,n)))
      do kz=llev+1,nz-1
        pinmconv(kz)=(uvwzlev(ix,jy,kz+1)-uvwzlev(ix,jy,kz-1))/ &
             ((aknew(kz+1)+bknew(kz+1)*ps(ix,jy,1,n))- &
             (aknew(kz-1)+bknew(kz-1)*ps(ix,jy,1,n)))
      end do
      pinmconv(nz)=(uvwzlev(ix,jy,nz)-uvwzlev(ix,jy,nz-1))/ &
           ((aknew(nz)+bknew(nz)*ps(ix,jy,1,n))- &
           (aknew(nz-1)+bknew(nz-1)*ps(ix,jy,1,n)))


  ! Levels, where u,v,t and q are given
  !************************************

      uu(ix,jy,1,n)=uuh(ix,jy,llev)
      vv(ix,jy,1,n)=vvh(ix,jy,llev)
      tt(ix,jy,1,n)=tth(ix,jy,llev,n)
      qv(ix,jy,1,n)=qvh(ix,jy,llev,n)
      pv(ix,jy,1,n)=pvh(ix,jy,llev)
      rho(ix,jy,1,n)=rhoh(llev)
      pplev(ix,jy,1,n)=akz(llev)
      uu(ix,jy,nz,n)=uuh(ix,jy,nuvz)
      vv(ix,jy,nz,n)=vvh(ix,jy,nuvz)
      tt(ix,jy,nz,n)=tth(ix,jy,nuvz,n)
      qv(ix,jy,nz,n)=qvh(ix,jy,nuvz,n)
      pv(ix,jy,nz,n)=pvh(ix,jy,nuvz)
      rho(ix,jy,nz,n)=rhoh(nuvz)
      pplev(ix,jy,nz,n)=akz(nuvz)
      kmin=llev+1
      do iz=2,nz-1
        do kz=kmin,nuvz
          if(height(iz).gt.uvzlev(nuvz)) then
            uu(ix,jy,iz,n)=uu(ix,jy,nz,n)
            vv(ix,jy,iz,n)=vv(ix,jy,nz,n)
            tt(ix,jy,iz,n)=tt(ix,jy,nz,n)
            qv(ix,jy,iz,n)=qv(ix,jy,nz,n)
            pv(ix,jy,iz,n)=pv(ix,jy,nz,n)
            rho(ix,jy,iz,n)=rho(ix,jy,nz,n)
            pplev(ix,jy,iz,n)=pplev(ix,jy,nz,n)
            goto 30
          endif
          if ((height(iz).gt.uvzlev(kz-1)).and. &
               (height(iz).le.uvzlev(kz))) then
           dz1=height(iz)-uvzlev(kz-1)
           dz2=uvzlev(kz)-height(iz)
           dz=dz1+dz2
           uu(ix,jy,iz,n)=(uuh(ix,jy,kz-1)*dz2+uuh(ix,jy,kz)*dz1)/dz
           vv(ix,jy,iz,n)=(vvh(ix,jy,kz-1)*dz2+vvh(ix,jy,kz)*dz1)/dz
           tt(ix,jy,iz,n)=(tth(ix,jy,kz-1,n)*dz2 &
                +tth(ix,jy,kz,n)*dz1)/dz
           qv(ix,jy,iz,n)=(qvh(ix,jy,kz-1,n)*dz2 &
                +qvh(ix,jy,kz,n)*dz1)/dz
           pv(ix,jy,iz,n)=(pvh(ix,jy,kz-1)*dz2+pvh(ix,jy,kz)*dz1)/dz
           rho(ix,jy,iz,n)=(rhoh(kz-1)*dz2+rhoh(kz)*dz1)/dz
           pplev(ix,jy,iz,n)=(akz(kz-1)*dz2+akz(kz)*dz1)/dz
          endif
        end do
30      continue
      end do


  ! Levels, where w is given
  !*************************

      ww(ix,jy,1,n)=wwh(ix,jy,llev)*pinmconv(llev)
      ww(ix,jy,nz,n)=wwh(ix,jy,nwz)*pinmconv(nz)
      kmin=llev+1
      do iz=2,nz
        do kz=kmin,nwz
          if ((height(iz).gt.wzlev(kz-1)).and. &
               (height(iz).le.wzlev(kz))) then
           dz1=height(iz)-wzlev(kz-1)
           dz2=wzlev(kz)-height(iz)
           dz=dz1+dz2
           ww(ix,jy,iz,n)=(wwh(ix,jy,kz-1)*pinmconv(kz-1)*dz2 &
                +wwh(ix,jy,kz)*pinmconv(kz)*dz1)/dz

          endif
        end do
      end do


  ! Compute density gradients at intermediate levels
  !*************************************************

      drhodz(ix,jy,1,n)=(rho(ix,jy,2,n)-rho(ix,jy,1,n))/ &
           (height(2)-height(1))
      do kz=2,nz-1
        drhodz(ix,jy,kz,n)=(rho(ix,jy,kz+1,n)-rho(ix,jy,kz-1,n))/ &
             (height(kz+1)-height(kz-1))
      end do
      drhodz(ix,jy,nz,n)=drhodz(ix,jy,nz-1,n)

    end do
  end do


  !****************************************************************
  ! Compute slope of eta levels in windward direction and resulting
  ! vertical wind correction
  !****************************************************************

  do jy=1,ny-2
    do ix=1,nx-2

  ! NCEP version: find first level above ground
      llev = 0
      do i=1,nuvz
       if (ps(ix,jy,1,n).lt.akz(i)) llev=i
      end do
       llev = llev+1
       if (llev.gt.nuvz-2) llev = nuvz-2
  !     if (llev.eq.nuvz-2) write(*,*) 'verttransform
  !    +WARNING: LLEV eq NUZV-2'
  ! NCEP version

      kmin=llev+1
      do iz=2,nz-1

        ui=uu(ix,jy,iz,n)*dxconst/cos((real(jy)*dy+ylat0)*pi180)
        vi=vv(ix,jy,iz,n)*dyconst

        do kz=kmin,nz
          if ((height(iz).gt.uvwzlev(ix,jy,kz-1)).and. &
               (height(iz).le.uvwzlev(ix,jy,kz))) then
            dz1=height(iz)-uvwzlev(ix,jy,kz-1)
            dz2=uvwzlev(ix,jy,kz)-height(iz)
            dz=dz1+dz2
            kl=kz-1
            klp=kz
            goto 47
          endif
        end do

47      ix1=ix-1
        jy1=jy-1
        ixp=ix+1
        jyp=jy+1

        dzdx1=(uvwzlev(ixp,jy,kl)-uvwzlev(ix1,jy,kl))/2.
        dzdx2=(uvwzlev(ixp,jy,klp)-uvwzlev(ix1,jy,klp))/2.
        dzdx=(dzdx1*dz2+dzdx2*dz1)/dz

        dzdy1=(uvwzlev(ix,jyp,kl)-uvwzlev(ix,jy1,kl))/2.
        dzdy2=(uvwzlev(ix,jyp,klp)-uvwzlev(ix,jy1,klp))/2.
        dzdy=(dzdy1*dz2+dzdy2*dz1)/dz

        ww(ix,jy,iz,n)=ww(ix,jy,iz,n)+(dzdx*ui+dzdy*vi)

      end do

    end do
  end do


  ! If north pole is in the domain, calculate wind velocities in polar
  ! stereographic coordinates
  !*******************************************************************

  if (nglobal) then
    do jy=int(switchnorthg)-2,nymin1
      ylat=ylat0+real(jy)*dy
      do ix=0,nxmin1
        xlon=xlon0+real(ix)*dx
        do iz=1,nz
          call cc2gll(northpolemap,ylat,xlon,uu(ix,jy,iz,n), &
               vv(ix,jy,iz,n),uupol(ix,jy,iz,n), &
               vvpol(ix,jy,iz,n))
        end do
      end do
    end do


    do iz=1,nz

  ! CALCULATE FFPOL, DDPOL FOR CENTRAL GRID POINT
      xlon=xlon0+real(nx/2-1)*dx
      xlonr=xlon*pi/180.
      ffpol=sqrt(uu(nx/2-1,nymin1,iz,n)**2+ &
           vv(nx/2-1,nymin1,iz,n)**2)
      if(vv(nx/2-1,nymin1,iz,n).lt.0.) then
        ddpol=atan(uu(nx/2-1,nymin1,iz,n)/ &
             vv(nx/2-1,nymin1,iz,n))-xlonr
      elseif (vv(nx/2-1,nymin1,iz,n).gt.0.) then
        ddpol=pi+atan(uu(nx/2-1,nymin1,iz,n)/ &
             vv(nx/2-1,nymin1,iz,n))-xlonr
      else
        ddpol=pi/2-xlonr
      endif
      if(ddpol.lt.0.) ddpol=2.0*pi+ddpol
      if(ddpol.gt.2.0*pi) ddpol=ddpol-2.0*pi

  ! CALCULATE U,V FOR 180 DEG, TRANSFORM TO POLAR STEREOGRAPHIC GRID
      xlon=180.0
      xlonr=xlon*pi/180.
      ylat=90.0
      uuaux=-ffpol*sin(xlonr+ddpol)
      vvaux=-ffpol*cos(xlonr+ddpol)
      call cc2gll(northpolemap,ylat,xlon,uuaux,vvaux,uupolaux, &
           vvpolaux)

      jy=nymin1
      do ix=0,nxmin1
        uupol(ix,jy,iz,n)=uupolaux
        vvpol(ix,jy,iz,n)=vvpolaux
      end do
    end do


  ! Fix: Set W at pole to the zonally averaged W of the next equator-
  ! ward parallel of latitude

  do iz=1,nz
      wdummy=0.
      jy=ny-2
      do ix=0,nxmin1
        wdummy=wdummy+ww(ix,jy,iz,n)
      end do
      wdummy=wdummy/real(nx)
      jy=nymin1
      do ix=0,nxmin1
        ww(ix,jy,iz,n)=wdummy
      end do
  end do

  endif


  ! If south pole is in the domain, calculate wind velocities in polar
  ! stereographic coordinates
  !*******************************************************************

  if (sglobal) then
    do jy=0,int(switchsouthg)+3
      ylat=ylat0+real(jy)*dy
      do ix=0,nxmin1
        xlon=xlon0+real(ix)*dx
        do iz=1,nz
          call cc2gll(southpolemap,ylat,xlon,uu(ix,jy,iz,n), &
               vv(ix,jy,iz,n),uupol(ix,jy,iz,n), &
               vvpol(ix,jy,iz,n))
        end do
      end do
    end do

    do iz=1,nz

  ! CALCULATE FFPOL, DDPOL FOR CENTRAL GRID POINT
      xlon=xlon0+real(nx/2-1)*dx
      xlonr=xlon*pi/180.
      ffpol=sqrt(uu(nx/2-1,0,iz,n)**2+ &
           vv(nx/2-1,0,iz,n)**2)
      if(vv(nx/2-1,0,iz,n).lt.0.) then
        ddpol=atan(uu(nx/2-1,0,iz,n)/ &
             vv(nx/2-1,0,iz,n))+xlonr
      elseif (vv(nx/2-1,0,iz,n).gt.0.) then
        ddpol=pi+atan(uu(nx/2-1,0,iz,n)/ &
             vv(nx/2-1,0,iz,n))-xlonr
      else
        ddpol=pi/2-xlonr
      endif
      if(ddpol.lt.0.) ddpol=2.0*pi+ddpol
      if(ddpol.gt.2.0*pi) ddpol=ddpol-2.0*pi

  ! CALCULATE U,V FOR 180 DEG, TRANSFORM TO POLAR STEREOGRAPHIC GRID
      xlon=180.0
      xlonr=xlon*pi/180.
      ylat=-90.0
      uuaux=+ffpol*sin(xlonr-ddpol)
      vvaux=-ffpol*cos(xlonr-ddpol)
      call cc2gll(northpolemap,ylat,xlon,uuaux,vvaux,uupolaux, &
           vvpolaux)

      jy=0
      do ix=0,nxmin1
        uupol(ix,jy,iz,n)=uupolaux
        vvpol(ix,jy,iz,n)=vvpolaux
      end do
    end do


  ! Fix: Set W at pole to the zonally averaged W of the next equator-
  ! ward parallel of latitude

    do iz=1,nz
      wdummy=0.
      jy=1
      do ix=0,nxmin1
        wdummy=wdummy+ww(ix,jy,iz,n)
      end do
      wdummy=wdummy/real(nx)
      jy=0
      do ix=0,nxmin1
        ww(ix,jy,iz,n)=wdummy
      end do
    end do
  endif


  !   write (*,*) 'initializing clouds, n:',n,nymin1,nxmin1,nz
  !   create a cloud and rainout/washout field, clouds occur where rh>80%
  !   total cloudheight is stored at level 0
  do jy=0,nymin1
    do ix=0,nxmin1
      rain_cloud_above=0
      lsp=lsprec(ix,jy,1,n)
      convp=convprec(ix,jy,1,n)
      cloudsh(ix,jy,n)=0
      do kz_inv=1,nz-1
         kz=nz-kz_inv+1
         pressure=rho(ix,jy,kz,n)*r_air*tt(ix,jy,kz,n)
         rh=qv(ix,jy,kz,n)/f_qvsat(pressure,tt(ix,jy,kz,n))
         clouds(ix,jy,kz,n)=0
         if (rh.gt.0.8) then ! in cloud
            if ((lsp.gt.0.01).or.(convp.gt.0.01)) then ! cloud and precipitation
               rain_cloud_above=1
               cloudsh(ix,jy,n)=cloudsh(ix,jy,n)+ &
                    height(kz)-height(kz-1)
               if (lsp.ge.convp) then
                  clouds(ix,jy,kz,n)=3 ! lsp dominated rainout
               else
                  clouds(ix,jy,kz,n)=2 ! convp dominated rainout
               endif
            else ! no precipitation
                  clouds(ix,jy,kz,n)=1 ! cloud
            endif
         else ! no cloud
            if (rain_cloud_above.eq.1) then ! scavenging
               if (lsp.ge.convp) then
                  clouds(ix,jy,kz,n)=5 ! lsp dominated washout
               else
                  clouds(ix,jy,kz,n)=4 ! convp dominated washout
               endif
            endif
         endif
      end do
    end do
  end do


end subroutine verttransform